Article contents
Marginal stability and chaos in the solar system
Published online by Cambridge University Press: 25 May 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The motion of the planets is one of the best modelized problems in physics, and its study can be practically reduced to the study of the behavior of the solutions of the well known gravitational equations, neglecting all dissipation, and treating the planets as mass points. In fact, the mathematical complexity of this problem, despites its apparent simplicity is daunting and has been a challenge for mathematicians and astronomers since its formulation three centuries ago.
- Type
- Part II - Planets and Moon: Theory and Ephemerides
- Information
- Copyright
- Copyright © Kluwer 1996
References
Applegate, J.H., Douglas, M.R., Gursel, Y., Sussman, G.J. and Wisdom, J.: 1986, ‘The solar system for 200 million years,’
Astron. J.
92, 176–194
CrossRefGoogle Scholar
Bretagnon, P.: 1974, Termes à longue périodes dans le système solaire, Astron. Astrophys
30
341–362
Google Scholar
Brumberg, V.A., Chapront, J.: 1973, Construction of a general planetary theory of the first order, Cel. Mech.
8
335–355
CrossRefGoogle Scholar
Carpino, M., Milani, A. and Nobili, A.M.: 1987, Long-term numerical integrations and synthetic theories for the motion of the outer planets, Astron. Astrophys
181
182–194
Google Scholar
Cohen, C.J., Hubbard, E.C., Oesterwinter, C.: 1973, Astron. Papers Am. Ephemeris
XXII
1.Google Scholar
Duriez, L.: 1979, ‘Approche d'une théorie générale planétaire en variable elliptiques héliocentriques,
thèse Lille
Google Scholar
Gladman, B., Duncan, M.: 1990, On the fates of minor bodies in the outer solar system
Astron. J., 100(5).CrossRefGoogle Scholar
Holman, M.J., Wisdom, J.: 1993, Dynamical stability in the outer solar system and the delivery of short period comets
Astron. J., 105(5).CrossRefGoogle Scholar
Kinoshita, H., Nakai, H.: 1984, Motions of the perihelion of Neptune and Pluto, Cel. Mech.
34
203
CrossRefGoogle Scholar
Laskar, J.: 1986, Secular terms of classical planetary theories using the results of general theory, Astron. Astrophys.
157
59–70
Google Scholar
Laskar, J.: 1989, A numerical experiment on the chaotic behaviour of the Solar System
Nature, 338, 237–238
CrossRefGoogle Scholar
Laskar, J.: 1990, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88, 266–291
CrossRefGoogle Scholar
Laskar, J.: 1992a, A few points on the stability of the solar system, in Symposium IAU 152, Ferraz-Mello, S. ed., 1–16, Kluwer, Dordrecht
Google Scholar
Laskar, J.: 1992b, La stabilité du Système Solaire, in Chaos et Déteminisme, Dahan, A. et al., eds., Seuil, Paris
Google Scholar
Laskar, J.: 1994, Large scale chaos in the solar system, Astron. Astrophys.
287
L9–L12
Google Scholar
Laskar, J.: 1995, Large scale chaos and Marginal stability of the solar system, XIème Colloque ICMP, Paris july, 1994, International Press, p. 75–120
Google Scholar
Laskar, J., Quinn, T., Tremaine, S.: 1992a, Confirmation of Resonant Structure in the Solar System, Icarus, 95, 148–152
CrossRefGoogle Scholar
Laskar, J.
Robutel, P.: 1993, The chaotic obliquity of the planets, Nature, 361, 608–612
CrossRefGoogle Scholar
Laskar, J., Joutel, F., Robutel, P.: 1993, Stabilization of the Earth's obliquity by the Moon, Nature, 361, 615–617
CrossRefGoogle Scholar
Levison, H.F., Duncan, M.J.: 1993, The gravitational sculpting of the Kuiper belt, Astrophys. J. Lett., 406, L35–L38
CrossRefGoogle Scholar
Newhall, X. X., Standish, E. M., Williams, J. G.: 1983, DE102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries, Astron. Astrophys.
125
150–167
Google Scholar
Nobili, A.M., Milani, A. and Carpino, M.: 1989, Fundamental frequencies and small divisors in the orbits of the outer planets, Astron. Astrophys.
210
313–336
Google Scholar
Quinn, T.R., Tremaine, S., Duncan, M.: 1991, ‘A three million year integration of the Earth's orbit,’
Astron. J.
101, 2287–2305
CrossRefGoogle Scholar
Sussman, G.J., and Wisdom, J.: 1988, ‘Numerical evidence that the motion of Pluto is chaotic.’
Science
241, 433–437
CrossRefGoogle ScholarPubMed
Sussman, G.J., and Wisdom, J.: 1992, ‘Chaotic evolution of the solar system’, Science
257, 56–62
CrossRefGoogle ScholarPubMed
You have
Access
- 1
- Cited by