Two types of model calculations for small scale magnetic flux tubes in the solar atmosphere are reviewed. In the first kind, one follows the temporal evolution governed by the complete set of the MHD and radiative transfer equations to a (quasi) stationary solution. From such a solution the continuum contrasts of a photospheric flux tube in the visible and in the infrared continuum at 1.6 μm have been computed and are briefly discussed. The second, more empirical type of method assumes the flux tubes to be in magnetohydrostatic equilibrium. It is computationally faster and more flexible and allows us to explore a wide range of parameters. Models and insights obtained from such parameter studies are discussed in some detail. These include an explanation for the peculiar variation of the area asymmetry of Stokes V profiles across the solar disk in terms of mass motions in the surroundings of magnetic flux tubes.
Furthermore, a two-dimensional model of the lower chromosphere that has been developed is presented. Emphasis is laid on the effect of thermal bifurcation of the lower chromosphere on the structure of the chromospheric magnetic field. If the cool carbon monoxide clouds, observed in the infrared, occupy the non-magnetic regions, the flux tubes expand very strongly and form a magnetic canopy with an almost horizontal base. This has consequences for the spatial distribution of the Ca II K spectral line emission.
Finally, some consideration is given to the formation and destruction of intense magnetic flux tubes in the solar photosphere. The formation is described as a consequence of the flux expulsion process that leads to a convective instability. A possible observational signature of this mechanism is proposed.