Published online by Cambridge University Press: 12 June 2017
Post-application seasonal (May-July) average concentrations of atrazine, cyanazine, and, to a lesser extent, alachlor sometimes exceed their Maximum Contaminant Levels (MCLs) (3 ug/L for atrazine and 2 ug/L for alachlor) or Maximum Contaminant Level Goal (MCLG) (1 ug/L for cyanazine) in surface waters of the Mississippi and Great Lakes Basins. These three chemicals are among the primary pre-emergent herbicides applied to corn. MCLs and MCLGs are compared to annual average concentrations for regulatory purposes. However, annual average concentrations are much less frequently reported than post-application seasonal averages. In most cases, both seasonal and annual average concentrations are substantially less than the MCLs or MCLG. However, actual and estimated annual mean concentrations occasionally exceed the MCLs or MCLG. Actual or estimated exceedences occur more frequently for atrazine and cyanazine than for alachlor, and may occur more frequently in lakes or reservoirs with long retention times than in streams and rivers. Additional year round data, and data for lakes and reservoirs, are needed to determine the extent to which such exceedences occur throughout the corn belt. The American Water Works Association (AWWA) believes that substantial numbers of Community Water Systems (CWSs) within the corn belt are currently, or will be, in violation of the revised Safe Drinking Water Act (SDWA) with respect to atrazine and cyanazine. They are concerned that such violations could result in numerous CWSs having to implement expensive tertiary treatment systems such as granular activated carbon to decrease herbicide concentrations. The United States Environmental Protection Agency, (US EPA) is continuing to review data on the pesticide concentrations in reservoirs and lakes that registrants have been submitting over the last 18 mo under the 6(a)(2) adverse impact provision of the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). The US EPA is also currently using computer modeling and other methods to evaluate potential alternative and/or supplemental herbicides to reduce atrazine use. In June 1992, the US EPA approved revised labeling that is designed to reduce indirect atrazine loadings to surface waters. Additional mitigation methods have been proposed and are being considered.