Imidazoles present a tunable, versatile and economical platform for the development of novel liquid solvents and polymer membranes for CO2 capture. An overview of our studies in this area is presented, with emphasis on characterization of structure-property relationships in imidazole-based materials through both experimental and computational studies. To this end, a growing library of systematically varied imidazole compounds has been synthesized using only commercial available starting materials and straightforward reactions. Using this library of compounds, we have sought to understand and develop predictive models for thermophysical properties relating to process design, including: density, viscosity, vapor pressure, pKa and CO2 absorption capacity. Furthermore, we have discovered that imidazoles are stable in the presence of SO2 and can form reversible 1:1 adducts, which can be beneficial as SO2 is typically present at ppm levels alongside CO2 in flue gas from coal-fired power plants.