We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a number field analogue of the Mertens conjecture and demonstrate its falsity for all but finitely many number fields of any given degree. We establish the existence of a logarithmic limiting distribution for the analogous Mertens function, expanding upon work of Ng. Finally, we explore properties of the generalised Mertens function of certain dicyclic number fields as consequences of Artin factorisation.
We define a knot to be half ribbon if it is the cross-section of a ribbon 2-knot, and observe that ribbon implies half ribbon implies slice. We introduce the half ribbon genus of a knot K, the minimum genus of a ribbon knotted surface of which K is a cross-section. We compute this genus for all prime knots up to 12 crossings, and many 13-crossing knots. The same approach yields new computations of the double slice genus. We also introduce the half fusion number of a knot K, that measures the complexity of ribbon 2-knots of which K is a cross-section. We show that it is bounded below by the Levine–Tristram signatures, and differs from the standard fusion number by an arbitrarily large amount.
We study the counts of smooth permutations and smooth polynomials over finite fields. For both counts we prove an estimate with an error term that matches the error term found in the integer setting by de Bruijn more than 70 years ago. The main term is the usual Dickman $\rho$ function, but with its argument shifted.
We determine the order of magnitude of $\log(p_{n,m}/\rho(n/m))$ where $p_{n,m}$ is the probability that a permutation on n elements, chosen uniformly at random, is m-smooth.
We uncover a phase transition in the polynomial setting: the probability that a polynomial of degree n in $\mathbb{F}_q$ is m-smooth changes its behaviour at $m\approx (3/2)\log_q n$.
In this paper, we give an explicit formula as well as a practical algorithm for computing the Cassels–Tate pairing on $\text{Sel}^{2}(J) \times \text{Sel}^{2}(J)$ where J is the Jacobian variety of a genus two curve under the assumption that all points in J[2] are K-rational. We also give an explicit formula for the Obstruction map $\text{Ob}: H^1(G_K, J[2]) \rightarrow \text{Br}(K)$ under the same assumption. Finally, we include a worked example demonstrating that we can improve the rank bound given by a 2-descent via computing the Cassels–Tate pairing.
Let $r_5(N)$ be the largest cardinality of a set in $\{1,\ldots,N\}$ which does not contain 5 elements in arithmetic progression. Then there exists a constant $c\in (0,1)$ such that
Our work is a consequence of recent improved bounds on the $U^4$-inverse theorem of J. Leng and the fact that 3-step nilsequences may be approximated by locally cubic functions on shifted Bohr sets. This, combined with the density increment strategy of Heath–Brown and Szemerédi, codified by Green and Tao, gives the desired result.