Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T10:49:49.791Z Has data issue: false hasContentIssue false

The failure of gene-centrism

Published online by Cambridge University Press:  11 September 2023

Edward Archer
Affiliation:
Research and Development, EvolvingFX, LLC, Fort Wayne, IN, USA archer1@evolvingfx.com
Carl J. Lavie
Affiliation:
John Ochsner Heart & Vascular Institute, Ochsner Clinical School – The University of Queensland School of Medicine, New Orleans, LA, USA clavie@ochsner.org

Abstract

“Challenging the utility of polygenic scores for social science” is a compelling but limited critique. Phenotypic development is sensitive to both initial conditions and all subsequent states – from conception to senescence. Thus, gene-centric analyses are misleading (and often meaningless) because gene products are transformed, and their phenotypic ‘effects' combined and attenuated with successive propagations from molecular and cellular contexts to organismal and social environments.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, E. (2015a). The childhood obesity epidemic as a result of nongenetic evolution: The maternal resources hypothesis. Mayo Clinic Proceedings, 90(1), 7792. https://doi.org/10.1016/j.mayocp.2014.08.006CrossRefGoogle ScholarPubMed
Archer, E. (2015b). In reply – Maternal, paternal, and societal efforts are needed to “cure” childhood obesity. Mayo Clinic Proceedings, 90(4), 555557. https://doi.org/10.1016/j.mayocp.2015.01.020CrossRefGoogle ScholarPubMed
Archer, E. (2015c). In reply – Epigenetics and childhood obesity. Mayo Clinic Proceedings, 90(5), 693695.CrossRefGoogle ScholarPubMed
Archer, E. (2015d). The mother of all problems. New Scientist, 225(3010), 3233. https://doi.org/10.1016/S0262-4079(15)60404-3CrossRefGoogle Scholar
Archer, E., & Lavie, C. J. (2022). Obesity subtyping: The etiology, prevention, and management of acquired versus inherited obese phenotypes. Nutrients, 14(11), 2286. https://www.mdpi.com/2072-6643/14/11/2286CrossRefGoogle ScholarPubMed
Archer, E., & Lavie, C. J. (2022). Obesity subtyping: The etiology, prevention, and management of acquired versus inherited obese phenotypes. Nutrients, 14(11), 2286. http://dx.doi.org/10.3390/nu14112286CrossRefGoogle ScholarPubMed
Archer, E., Lavie, C. J., Dobersek, U., & Hill, J. O. (2023). Metabolic inheritance and the competition for calories between mother and fetus. Metabolites, 13(4), 545. http://dx.doi.org/10.3390/metabo13040545CrossRefGoogle ScholarPubMed
Archer, E., Lavie, C. J., & Hill, J. O. (2018). The contributions of “diet”, “genes”, and physical activity to the etiology of obesity: Contrary evidence and consilience. Progress in Cardiovascular Diseases, 61(2), 89102. https://doi.org/10.1016/j.pcad.2018.06.002CrossRefGoogle Scholar
Archer, E., & McDonald, S. M. (2017). The maternal resources hypothesis and childhood obesity. In Patel, M. S. & Nielsen, J. S. (Eds.), Fetal and early postnatal programming and its influence on adult health (pp. 1732). CRC Press.CrossRefGoogle Scholar
Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D'Udine, B., Foley, R. A., … Sultan, S. E. (2004). Developmental plasticity and human health. Nature, 430(6998), 419421. https://doi.org/10.1038/nature02725CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359(1), 6173. https://doi.org/10.1056/NEJMra0708473CrossRefGoogle ScholarPubMed
Maestripieri, D., & Mateo, J. M. (Eds.). (2009). Maternal effects in mammals. University of Chicago Press.CrossRefGoogle Scholar
McClintock, B. (1984). The significance of responses of the genome to challenge. Science, 226(4676), 792801. http://www.jstor.org/stable/pdfplus/1693251.pdf?acceptTC=trueCrossRefGoogle ScholarPubMed
McQueen, D. B., Schufreider, A., Lee, S. M., Feinberg, E. C., & Uhler, M. L. (2015). Racial disparities in in vitro fertilization outcomes. Fertility and Sterility, 104(2), 398402.e391. https://doi.org/10.1016/j.fertnstert.2015.05.012CrossRefGoogle ScholarPubMed
Navot, D., Bergh, R. A., Williams, M. A., Garrisi, G. J., Guzman, I., Sandler, B., & Grunfeld, L. (1991). Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. The Lancet, 337(8754), 13751377. https://doi.org/10.1016/0140-6736(91)93060-MCrossRefGoogle ScholarPubMed
Santos, T. A., El Shourbagy, S., & St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertility and Sterility, 85(3), 584591. https://doi.org/10.1016/j.fertnstert.2005.09.017CrossRefGoogle ScholarPubMed
Smith, L. M., Agar, J. N., Chamot-Rooke, J., Danis, P. O., Ge, Y., Loo, J. A., … Kelleher, N. L. (2021). The human proteoform project: Defining the human proteome. Science Advances, 7(46), eabk0734. https://doi.org/10.1126/sciadv.abk0734CrossRefGoogle ScholarPubMed
Wang, Q., & Moley, K. H. (2010). Maternal diabetes and oocyte quality. Mitochondrion, 10(5), 403410. https://doi.org/10.1016/j.mito.2010.03.002CrossRefGoogle ScholarPubMed
Zhang, J.-J., Liu, X., Chen, L., Zhang, S., Zhang, X., Hao, C., & Miao, Y.-L. (2020). Advanced maternal age alters expression of maternal effect genes that are essential for human oocyte quality. Aging (Albany, NY), 12(4), 39503961. https://doi.org/10.18632/aging.102864CrossRefGoogle ScholarPubMed
Zhou, X., McQueen, D. B., Schufreider, A., Lee, S. M., Uhler, M. L., & Feinberg, E. C. (2020). Black recipients of oocyte donation experience lower live birth rates compared with white recipients. Reproductive BioMedicine Online, 40(5), 668673. https://doi.org/10.1016/j.rbmo.2020.01.008CrossRefGoogle ScholarPubMed