Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:04:14.127Z Has data issue: false hasContentIssue false

Above and beyond “Above and beyond the concrete”

Published online by Cambridge University Press:  19 June 2020

Michael Gilead
Affiliation:
Department of Psychology, Ben-Gurion University, Beersheba84105, Israelmgilead@bgu.ac.il http://www.gileadlab.net/
Yaacov Trope
Affiliation:
Department of Psychology, New York University, New York, NY10003yaacov.trope@nyu.edu http://www.psych.nyu.edu/tropelab/
Nira Liberman
Affiliation:
Department of Psychology, Tel-Aviv University, Tel-Aviv69978, Israel.niralib@tauex.ac.il https://en-social-sciences.tau.ac.il/profile/niralib

Abstract

The commentaries address our view of abstraction, our ontology of abstract entities, and our account of predictive cognition as relying on relatively concrete simulation or relatively abstract theory-based inference. These responses revisit classic questions concerning mental representation and abstraction in the context of current models of predictive cognition. The counter arguments to our article echo: constructivist theories of knowledge, “neat” approaches in artificial intelligence and decision theory, neo-empiricist models of concepts, and externalist views of cognition. We offer several empirical predictions that address points of contention and that highlight the generative potential of our model.

Type
Authors' Response
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aravena, P., Courson, M., Frak, V., Cheylus, A., Paulignan, Y., Deprez, V. & Nazir, T. (2014) Action relevance in linguistic context drives word-induced motor activity. Frontiers in Human Neuroscience 8:163.CrossRefGoogle ScholarPubMed
Aravena, P., Delevoye-Turrell, Y., Deprez, V., Cheylus, A., Paulignan, Y., Frak, V. & Nazir, T. (2012) Grip force reveals the context sensitivity of language-induced motor activity during “action words” processing: Evidence from sentential negation. PLOS ONE 7(12):e50287.CrossRefGoogle ScholarPubMed
Brainerd, C. J., Yang, Y., Reyna, V. F., Howe, M. L. & Mills, B. A. (2008) Semantic processing in “associative” false memory. Psychonomic Bulletin & Review 15(6):10351053. doi: 10.3758/PBR.15.6.1035.CrossRefGoogle ScholarPubMed
Clark, A. (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36(3):181204.CrossRefGoogle ScholarPubMed
Doya, K. (2007) Bayesian brain: Probabilistic approaches to neural coding. MIT press.Google Scholar
Friston, K. J., Parr, T. & de Vries, B. (2017c) The graphical brain: Belief propagation and active inference. Network Neuroscience 1(4):381414. doi: 10.1162/NETN_a_00018.CrossRefGoogle Scholar
Gilead, M., Liberman, N. & Maril, A. (2013) The language of future-thought: An fMRI study of embodiment and tense processing. Neuroimage 65:267–79. Available at: http://doi.org/10.1016/j.neuroimage.2012.09.073.CrossRefGoogle Scholar
Goldman, A. I. (2005) Imitation, mind reading, and simulation. In: Perspectives on imitation: Imitation, human development, and culture, Vol. 79.Google Scholar
Helmholtz, H. von (1856/1961) Treatise of physiological optics: Concerning the perceptions in general. In: Classics in psychology, ed. Shipley, T., pp. 79127. Philosophy Library. (Original work published in 1856)Google Scholar
Huth, A. G., De Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. (2016) Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532(7600):453–58. doi: 10.1038/nature17637.CrossRefGoogle ScholarPubMed
Kemmerer, D. (2015) Are the motor features of verb meanings represented in the precentral motor cortices? Yes, but within the context of a flexible, multilevel architecture for conceptual knowledge. Psychonomic Bulletin & Review 22(4):1068–75.CrossRefGoogle ScholarPubMed
Kemmerer, D., Rudrauf, D., Manzel, K. & Tranel, D. (2012) Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex 48(7):826–48. doi: 10.1016/j.cortex.2010.11.001.CrossRefGoogle ScholarPubMed
Knill, D. C. & Pouget, A. (2004) The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences 27(12):712–19.CrossRefGoogle ScholarPubMed
Knutson, K. M., Wood, J. N. & Grafman, J. (2004) Brain activation in processing temporal sequence: An fMRI study. NeuroImage 23(4):1299–307.CrossRefGoogle Scholar
Marcus, G. (2009) Kluge: The haphazard evolution of the human mind. Houghton Mifflin Harcourt.Google Scholar
Meyer, M. L., Hershfield, H. E., Waytz, A. G., Mildner, J. N. & Tamir, D. I. (2019) Creative expertise is associated with transcending the here and now. Journal of Personality and Social Psychology 116(4):483–94. https://doi.org/10.1037/pspa0000148.CrossRefGoogle ScholarPubMed
Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.Google Scholar
Murphy, G. L. & Medin, D. L. (1985) The role of theories in conceptual coherence. Psychological Review 92(3):289.CrossRefGoogle ScholarPubMed
Ng, A. Y. & Jordan, M. I. (2002) On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In: Advances in neural information processing systems, ed. Dietterich, T. G., Becker, S. & Ghahramani, Z., pp. 841–48.Google Scholar
Peters, J. & Büchel, C. (2010) Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron 66(1):138–48.CrossRefGoogle ScholarPubMed
Postle, N., McMahon, K. L., Ashton, R., Meredith, M. & de Zubicaray, G. I. (2008) Action word meaning representations in cytoarchitectonically defined primary and premotor cortices. NeuroImage 43(3):634–44.CrossRefGoogle ScholarPubMed
Rogers, T. T. & McClelland, J. L. (2004) Semantic cognition: A parallel distributed processing approach. MIT Press.CrossRefGoogle Scholar
Tarhan, L. Y., Watson, C. E. & Buxbaum, L. J. (2015) Shared and distinct neuroanatomic regions critical for tool-related action production and recognition: Evidence from 131 left-hemisphere stroke patients. Journal of Cognitive Neuroscience 27(12):2491–511.CrossRefGoogle ScholarPubMed
Tomasino, B., Fabbro, F. & Brambilla, P. (2014) How do conceptual representations interact with processing demands: An fMRI study on action- and abstract-related words. Brain Research 1591:3852.CrossRefGoogle Scholar
Tomasino, B. & Rumiati, R. (2013) At the mercy of strategies: The role of motor representations in language understanding. Frontiers in Psychology 4:27. doi: 10.3389/fpsyg.2013.00027.CrossRefGoogle ScholarPubMed
Wang, J., Conder, J. A., Blitzer, D. N. & Shinkareva, S. V. (2010) Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping 31(10):1459–68.CrossRefGoogle ScholarPubMed
Watson, C. E., Cardillo, E. R., Ianni, G. R. & Chatterjee, A. (2013) Action concepts in the brain: An activation likelihood estimation meta-analysis. Journal of Cognitive Neuroscience 25(8):1191–205. doi: 10.1162/jocn_a_00401.CrossRefGoogle ScholarPubMed