Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T04:20:50.290Z Has data issue: false hasContentIssue false

Successful simulation requires bridging levels of abstraction

Published online by Cambridge University Press:  19 June 2020

Zidong Zhao
Affiliation:
Department of Psychology, Princeton University, Princeton, NJ08540zidong@princeton.edujmildner@princeton.edudtamir@princeton.edu
Judith N. Mildner
Affiliation:
Department of Psychology, Princeton University, Princeton, NJ08540zidong@princeton.edujmildner@princeton.edudtamir@princeton.edu
Diana I. Tamir
Affiliation:
Department of Psychology, Princeton University, Princeton, NJ08540zidong@princeton.edujmildner@princeton.edudtamir@princeton.edu Princeton Neuroscience Institute, Princeton University, Princeton, NJ08540.

Abstract

Although many simulations draw upon only one level of abstraction, the process for generating rich simulations requires a dynamic interplay between abstract and concrete knowledge. A complete model of simulation must account for a mind and brain that can bridge the perceptual with the conceptual, the episodic with the semantic, and the concrete with the abstract.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baetens, K., Ma, N., Steen, J. & Overwalle, F. V. (2014) Involvement of the mentalizing network in social and non-social high construal. Social Cognitive and Affective Neuroscience 9(6):817–24. https://doi.org/10.1093/scan/nst048.CrossRefGoogle ScholarPubMed
Bar, M., Aminoff, E., Mason, M. & Fenske, M. (2007) The units of thought. Hippocampus 17(6):420–28. https://doi.org/10.1002/hipo.20287.CrossRefGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex 19(12):2767–96. https://doi.org/10.1093/cercor/bhp055.CrossRefGoogle ScholarPubMed
Bornstein, A. M., Khaw, M. W., Shohamy, D. & Daw, N. D. (2017) Reminders of past choices bias decisions for reward in humans. Nature Communications 8:15958. https://doi.org/10.1038/ncomms15958.CrossRefGoogle ScholarPubMed
Brooks, J. A., Chikazoe, J., Sadato, N. & Freeman, J. B. (2019) The neural representation of facial-emotion categories reflects conceptual structure. Proceedings of the National Academy of Sciences 116(32):15861–70. https://doi.org/10.1073/pnas.1816408116.CrossRefGoogle ScholarPubMed
Brooks, J. A. & Freeman, J. B. (2018) Conceptual knowledge predicts the representational structure of facial emotion perception. Nature Human Behaviour 2(8):581–91. https://doi.org/10.1038/s41562-018-0376-6.CrossRefGoogle ScholarPubMed
Conway, M. A. & Pleydell-Pearce, C. W. (2000) The construction of autobiographical memories in the self-memory system. Psychological Review 107(2):261–88. Available at: http://doi.org/10.1037//0033-295x.107.2.261.CrossRefGoogle Scholar
D'Argembeau, A. & Mathy, A. (2011) Tracking the construction of episodic future thoughts. Journal of Experimental Psychology. General 140(2):258–71. https://doi.org/10.1037/a0022581.CrossRefGoogle ScholarPubMed
Fairhall, S. L. & Caramazza, A. (2013) Brain regions that represent amodal conceptual knowledge. The Journal of Neuroscience 33(25):10552–58. https://doi.org/10.1523/JNEUROSCI.0051-13.2013.CrossRefGoogle ScholarPubMed
Gamble, B., Moreau, D., Tippett, L. J. & Addis, D. R. (2019) Specificity of future thinking in depression: A meta-analysis. Perspectives on Psychological Science 14(5):816–34. https://doi.org/10.1177/1745691619851784.CrossRefGoogle ScholarPubMed
Gandolfo, M. & Downing, P. E. (2019) Causal evidence for expression of perceptual expectations in category-selective extrastriate regions. Current Biology 29(15):24962500.e3. https://doi.org/10.1016/j.cub.2019.06.024.CrossRefGoogle ScholarPubMed
Gershman, S. J. & Daw, N. D. (2017) Reinforcement learning and episodic memory in humans and animals: An integrative framework. Annual Review of Psychology 68(1):101–28. https://doi.org/10.1146/annurev-psych-122414-033625.CrossRefGoogle Scholar
Gilead, M., Liberman, N. & Maril, A. (2014) From mind to matter: Neural correlates of abstract and concrete mindsets. Social Cognitive and Affective Neuroscience 9(5):638–45. https://doi.org/10.1093/scan/nst031.CrossRefGoogle ScholarPubMed
Griffiths, T. L., Vul, E. & Sanborn, A. N. (2012) Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science 21(4):263–68. https://doi.org/10.1177/0963721412447619.CrossRefGoogle Scholar
Irish, M., Addis, D. R., Hodges, J. R. & Piguet, O. (2012) Exploring the content and quality of episodic future simulations in semantic dementia. Neuropsychologia 50(14):3488–95. https://doi.org/10.1016/j.neuropsychologia.2012.09.012.CrossRefGoogle ScholarPubMed
Irish, M. & Piguet, O. (2013) The pivotal role of semantic memory in remembering the past and imagining the future. Frontiers in Behavioral Neuroscience 7:Article 27. https://doi.org/10.3389/fnbeh.2013.00027.CrossRefGoogle ScholarPubMed
Jing, H. G., Madore, K. P. & Schacter, D. L. (2017) Preparing for what might happen: An episodic specificity induction impacts the generation of alternative future events. Cognition 169:118–28. https://doi.org/10.1016/j.cognition.2017.08.010.CrossRefGoogle ScholarPubMed
Kenett, Y. N., Anaki, D. & Faust, M. (2014) Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience 8:Article 407. https://doi.org/10.3389/fnhum.2014.00407.CrossRefGoogle ScholarPubMed
Klein, S. B., Loftus, J., Trafton, J. G. & Fuhrman, R. W. (1992) Use of exemplars and abstractions in trait judgments: A model of trait knowledge about the self and others. Journal of Personality and Social Psychology 63(5):739–53. https://doi.org/10.1037/0022-3514.63.5.739.CrossRefGoogle Scholar
Klinger, E. (2013) Goal commitments and the content of thoughts and dreams: Basic principles. Frontiers in Psychology 4:415. https://doi.org/10.3389/fpsyg.2013.00415.CrossRefGoogle ScholarPubMed
Korn, C. W., Sharot, T., Walter, H., Heekeren, H. R. & Dolan, R. J. (2014) Depression is related to an absence of optimistically biased belief updating about future life events. Psychological Medicine 44(3):579–92. https://doi.org/10.1017/S0033291713001074.CrossRefGoogle Scholar
Madore, K. P., Jing, H. G. & Schacter, D. L. (2019) Episodic specificity induction and scene construction: Evidence for an event construction account. Consciousness and Cognition 68:111. https://doi.org/10.1016/j.concog.2018.12.001.CrossRefGoogle ScholarPubMed
Markus, H. (1977) Self-schemata and processing information about the self. Journal of Personality and Social Psychology 35(2):6378. https://doi.org/10.1037/0022-3514.35.2.63.CrossRefGoogle Scholar
Mednick, S. (1962) The associative basis of the creative process. Psychological Review 69(3):220–32. https://doi.org/10.1037/h0048850.CrossRefGoogle ScholarPubMed
Meyer, M. L., Hershfield, H. E., Waytz, A. G., Mildner, J. N. & Tamir, D. I. (2019) Creative expertise is associated with transcending the here and now. Journal of Personality and Social Psychology 116(4):483–94. https://doi.org/10.1037/pspa0000148.CrossRefGoogle ScholarPubMed
Mildner, J. N. & Tamir, D. I. (2019) Spontaneous thought as an unconstrained memory process. Trends in Neurosciences 42(11):8.CrossRefGoogle ScholarPubMed
Northoff, G. (2018) How does the brain's spontaneous activity generate our thoughts? In: The Oxford handbook of spontaneous thought, ed. Christoff, K. & Fox, K. C. R., pp 5570. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190464745.013.9.Google Scholar
Renoult, L., Davidson, P. S. R., Palombo, D. J., Moscovitch, M. & Levine, B. (2012) Personal semantics: At the of semantic and episodic memory. Trends in Cognitive Sciences 16(11):550–58. https://doi.org/10.1016/j.tics.2012.09.003.CrossRefGoogle ScholarPubMed
Siegel, J. Z., Mathys, C., Rutledge, R. B. & Crockett, M. J. (2018) Beliefs about bad people are volatile. Nature Human Behaviour 2(10):750–56. https://doi.org/10.1038/s41562-018-0425-1.CrossRefGoogle ScholarPubMed
Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A. & Hasson, U. (2016) Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications 7:12141. https://doi.org/10.1038/ncomms12141.CrossRefGoogle ScholarPubMed
Spunt, R. P., Kemmerer, D. & Adolphs, R. (2016) The neural basis of conceptualizing the same action at different levels of abstraction. Social Cognitive and Affective Neuroscience 11(7):1141–51. https://doi.org/10.1093/scan/nsv084.CrossRefGoogle ScholarPubMed
Tulving, E. (1972) Episodic and semantic memory. In: Organization of memory, pp. xiii, 423. Academic Press.Google Scholar
Williams, J. M. & Scott, J. (1988) Autobiographical memory in depression. Psychological Medicine 18(3):689–95. https://doi.org/10.1017/s0033291700008370.CrossRefGoogle ScholarPubMed