Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T01:55:42.199Z Has data issue: false hasContentIssue false

On the Link between Cognitive Diagnostic Models and Knowledge Space Theory

Published online by Cambridge University Press:  01 January 2025

Jürgen Heller*
Affiliation:
University of Tübingen
Luca Stefanutti
Affiliation:
University of Padova
Pasquale Anselmi
Affiliation:
University of Padova
Egidio Robusto
Affiliation:
University of Padova
*
Correspondence should be made to Jürgen Heller, Department of Psychology, University of Tübingen, Schleichstr. 4, 72076 Tübingen, Germany. Email: juergen.heller@uni-tuebingen.de

Abstract

The present work explores the connections between cognitive diagnostic models (CDM) and knowledge space theory (KST) and shows that these two quite distinct approaches overlap. It is proved that in fact the Multiple Strategy DINA (Deterministic Input Noisy AND-gate) model and the CBLIM, a competence-based extension of the basic local independence model (BLIM), are equivalent. To demonstrate the benefits that arise from integrating the two theoretical perspectives, it is shown that a fairly complete picture on the identifiability of these models emerges by combining results from both camps. The impact of the results is illustrated by an empirical example, and topics for further research are pointed out.

Type
Original Paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, D., Schrepp, M., & Held, T. (1994). Construction of knowledge spaces for problem solving in chess. In Fischer, G., & Laming, D. (Eds.), Contributions to mathematical psychology, psychometrics and methodology (pp. 123135). New York: Springer-Verlag.CrossRefGoogle Scholar
Bamber, D., & van Santen, J.P.H. (1985). How many parameters can a model have and still be testable?. Journal of Mathematical Psychology, 29, 443473.CrossRefGoogle Scholar
Bamber, D., & van Santen, J.P.H. (2000). How to assess a model’s testability and identifiability. Journal of Mathematical Psychology, 44, 2040.CrossRefGoogle ScholarPubMed
Bolt, D. (2007). The present and future of IRT-based cognitive diagnostic models (ICDMs) and related methods. Journal of Educational Measurement, 44(4), 377383.CrossRefGoogle Scholar
Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.Google Scholar
Cosyn, E., & Uzun, H. (2009). Note on two sufficient axioms for a well-graded knowledge space. Journal of Mathematical Psychology, 53(1), 4042.CrossRefGoogle Scholar
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115130.CrossRefGoogle Scholar
de la Torre, J. (2011). The generalized dina model framework. Psychometrika, 76, 179199.CrossRefGoogle Scholar
de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333353.CrossRefGoogle Scholar
de la Torre, J., & Douglas, J. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73(4), 595624.CrossRefGoogle Scholar
DeCarlo, L. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35, 826.CrossRefGoogle Scholar
de la Torre, J., Hong, Y., & Deng, W. (2010). Factors affecting the item parameter estimation and classification accuracy of the dina model. Journal of Educational Measurement, 47(2), 227249.CrossRefGoogle Scholar
DiBello, L.V., & Stout, W. (2007). Guest editors’ introduction and overwiew: Irt-based cognitive diagnostic models and related methods. Journal of Educational Measurement, 44(4), 285291.CrossRefGoogle Scholar
Doignon, J-P (1994). Knowledge spaces and skill assignments. In Fischer, G., & Laming, D. (Eds.), Contributions to mathematical psychology, psychometrics and methodology (pp. 111121). New York: Springer-Verlag.CrossRefGoogle Scholar
Doignon, J-P, & Falmagne, J-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23, 175196.CrossRefGoogle Scholar
Doignon, J-P, & Falmagne, J-C (1999). Knowledge spaces. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Düntsch, I., & Gediga, G. (1995). Skills and knowledge structures. British Journal of Mathematical and Statistical Psychology, 48, 927.CrossRefGoogle Scholar
Falmagne, J.-C. (1994). Finite markov learning models for knowledge structures. In Fischer, G., & Laming, D. (Eds.), Contributions to mathematical psychology, psychometrics, and methodology (pp. 7589). New York: Springer.CrossRefGoogle Scholar
Falmagne, J-C, & Doignon, J-P. (1988). A class of stochastic procedures for the assessment of knowledge. British Journal of Mathematical and Statistical Psychology, 41, 123.CrossRefGoogle Scholar
Falmagne, J-C, & Doignon, J-P. (1988). A markovian procedure for assessing the states of a system. Journal of Mathematical Psychology, 32, 232258.CrossRefGoogle Scholar
Falmagne, J-C, & Doignon, J-P (2011). Learning spaces: Interdisciplinary applied mathematics. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Falmagne, J-C, Koppen, M., Villano, M., Doignon, J-P, & Johanessen, L. (1990). Introduction to knowledge spaces: How to build, test and search them. Psychological Review, 97, 204224.CrossRefGoogle Scholar
Gediga, G., & Düntsch, I. (2002). Skill set analysis in knowledge structures. British Journal of Mathematical and Statistical Psychology, 55, 361384.CrossRefGoogle ScholarPubMed
Haertel, E.H. (1984). An application of latent class models to assessment data. Applied Psychological Measurement, 8, 333346.CrossRefGoogle Scholar
Haertel, E.H. (1989). Using restricted latent class models to map skill structure of achievement items. Journal of Educational Measurement, 26, 301321.CrossRefGoogle Scholar
Haertel, E.H. (1990). Continuous and discrete latent structure models of item response data. Psychometrika, 55, 477494.CrossRefGoogle Scholar
Heller, J. (2015). Identifiability in probabilistic knowledge structures. Manuscript under revision.Google Scholar
Heller, J., & Repitsch, C. (2008). Distributed skill functions and the meshing of knowledge structures. Journal of Mathematical Psychology, 52, 147157.CrossRefGoogle Scholar
Heller, J., & Repitsch, C. (2012). Exploiting prior information in stochastic knowledge assessment. Methodology, 8, 1222.CrossRefGoogle Scholar
Heller, J., & Wickelmaier, F. (2013). Minimum discrepancy estimation in probabilistic knowledge structures. Electronic Notes in Discrete Mathematics, 42, 4956.CrossRefGoogle Scholar
Henson, R., Templin, J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191210.CrossRefGoogle Scholar
Junker, B.W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258272.CrossRefGoogle Scholar
Klein, M., Birenbaum, M., Standiford, S., & Tatsuoka, K. (1990). Logical error analysis and construction of tests to diagnose student "bugs" in addition and subtraction of fractions. Urbana, IL: Computer-based Education Research Laboratory. (Research Report NO. CERL-RR-81-6).Google Scholar
Korossy, K. (1997). Extending the theory of knowledge spaces: A competence-performance approach. Zeitschrift für Psychologie, 205, 5382.Google Scholar
Korossy, K. (1999). Modeling knowledge as competence and performance. In Albert, D., & Lukas, J. (Eds.), Knowledge spaces: Theories, empirical research, applications (pp. 103132). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Lazarsfeld, P.F., & Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.Google Scholar
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187212.CrossRefGoogle Scholar
Mislevy, R.J. (1996). Test theory reconceived. Journal of Educational Masurement, 33(4), 379416.Google Scholar
R Core Team. (2013). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. http://www.R-project.org/.Google Scholar
Roussos, L.A., Templin, J.L., & Henson, R.A. (2007). Skills diagnosis using IRT-based latent class models. Journal of Educational Measurement, 44, 293311.CrossRefGoogle Scholar
Rupp, A., Templin, J., & Henson, R. (2010). Diagnostic measurement: Theory, methods, and applications. New York: Guilford Press.Google Scholar
Spoto, A., Stefanutti, L., & Vidotto, G. (2012). On the unidentifiability of a certain class of skill multi map based probabilistic knowledge structures. Journal of Mathematical Psychology, 56, 248255.CrossRefGoogle Scholar
Stefanutti, L., Heller, J., Anselmi, P., & Robusto, E. (2012). Assessing local identifiability of probabilistic knowledge structures. Behavior Research Methods, 44, 11971211.CrossRefGoogle ScholarPubMed
Tatsuoka, C. (1996). Sequential classification on partially ordered sets. Unpublished doctoral dissertation, Cornell University, Ithaca, NY.Google Scholar
Tatsuoka, C. (2002). Data-analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society Series C (Applied Statistics), 51, 337350.CrossRefGoogle Scholar
Tatsuoka, C. (2009). Diagnostic models as partially ordered sets. Measurement, 7, 4953.Google Scholar
Tatsuoka, C., Varadi, F., & Jaeger, J. (2013). Latent partially ordered classification models and normal mixtures. Journal of Educational and Behavioral Statistics, 38, 267294.CrossRefGoogle Scholar
Tatsuoka, K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In Frederiksen, N., Glaser, R., Lesgold, A., & Safto, M. (Eds.), Monitoring skills and knowledge acquisition (pp. 453488). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
Tatsuoka, K. (1991). Boolean algebra applied to determination of the universal set of misconception states. Princeton, NJ: Educational Testing Services. (ONR-Technical Report No. RR-91-44).Google Scholar
Templin, J.L., & Henson, R.A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287305.CrossRefGoogle ScholarPubMed
von Davier, M. (2005). A general diagnostic model applied to language testing data. Princeton, NJ: Educational Testing Service. (Research Report No. RR-05-16).Google Scholar