Let (G, ρ, X) be a prehomogeneous vector space with singular set S over an algebraic number field F. The main result of this paper is a proof for the convergence of the zeta fucntions Z(Φ, s) associated with (G, ρ, X) for large Re s under the assumption that S is a hypersurface. This condition is satisfied if G is reductive and (G, ρ, X) is regular. When the connected component of the stabilizer of a generic point x is semisimple and the group Πx of connected components of Gx is abelian, a clear estimate of the domain of convergence is given.
Moreover when S is a hypersurface and the Hasse principle holds for G, it is shown that the zeta fucntions are sums of (usually infinite) Euler products, the local components of which are orbital local zeta functions. This result has been proved in a previous paper by the author under the more restrictive condition that (G, ρ, X) is irreducible, regular, and reduced, and the zeta function is absolutely convergent.