Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T03:35:51.019Z Has data issue: false hasContentIssue false

CONNECTIVITY AND PURITY FOR LOGARITHMIC MOTIVES

Published online by Cambridge University Press:  14 June 2021

Federico Binda
Affiliation:
Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano Via Cesare Saldini 50, Milano 20133, Italy (federico.binda@unimi.it)
Alberto Merici
Affiliation:
Institut für Mathematik, Universität Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland (alberto.merici@math.uzh.ch)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The goal of this article is to extend the work of Voevodsky and Morel on the homotopy t-structure on the category of motivic complexes to the context of motives for logarithmic schemes. To do so, we prove an analogue of Morel’s connectivity theorem and show a purity statement for $({\mathbf {P}}^1, \infty )$ -local complexes of sheaves with log transfers. The homotopy t-structure on ${\operatorname {\mathbf {logDM}^{eff}}}(k)$ is proved to be compatible with Voevodsky’s t-structure; that is, we show that the comparison functor $R^{{\overline {\square }}}\omega ^*\colon {\operatorname {\mathbf {DM}^{eff}}}(k)\to {\operatorname {\mathbf {logDM}^{eff}}}(k)$ is t-exact. The heart of the homotopy t-structure on ${\operatorname {\mathbf {logDM}^{eff}}}(k)$ is the Grothendieck abelian category of strictly cube-invariant sheaves with log transfers: we use it to build a new version of the category of reciprocity sheaves in the style of Kahn-Saito-Yamazaki and Rülling.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Artin, M. and Mazur, B., Etale Homotopy, Lecture Notes in Mathematics , Vol. 100 (Springer, Berlin, 1986). Reprint of the 1969 original.Google Scholar
Artin, Michael, Grothendieck, Alexander and Verdier, J. L., Séminaire de géométrie algébrique du Bois-Marie 1963–1964. Théorie des topos et cohomologie étale des schémas . (SGA 4, Volume 1). Tome 1: Théorie des topos. Exposés I à IV. 2e éd., Vol. 269 (Springer, Cham, Switzerland, 1972). Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat.Google Scholar
Artin, Michael, Grothendieck, Alexander and Verdier, J. L., Séminaire de géométrie algébrique du Bois-Marie 1963–1964. Théorie des topos et cohomologie étale des schémas . (SGA 4, Volume 2). Tome 2, Vol. 270 (Springer, Cham, Switzerland, 1972). Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat.Google Scholar
Ayoub, Joseph, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II, Astérisque, 315 (2007), vi+364.Google Scholar
Ayoub, Joseph, ${\mathbb{P}}^1$ -Localisation and an arithmetic Kodaira-Spencer class, Tunisian J. Math. 3 (2021), 259308. http://user.math.uzh.ch/ayoub/PDF-Files/Arith-KS.pdf.CrossRefGoogle Scholar
Beĭlinson, A. A., Bernstein, J. and Deligne, P., Analysis and topology on singular spaces, I Astérisque, 100 (1982), 5171.Google Scholar
Binda, Federico, Park, Doosung and Østvær, Paul Arne, Triangulated categories of logarithmic motives over a field, Preprint, 2020, https://arxiv.org/abs/2004.12298.Google Scholar
Colliot-Thélène, Jean-Louis, Hoobler, Raymond T. and Kahn, Bruno, The Bloch-Ogus-Gabber theorem, in Algebraic $K$ -Theory, Fields Inst. Commun., Vol. 16 (American Mathematical Society, Providence, RI, 1997), pp. 3194.Google Scholar
Déglise, Frédéric, Modules homotopiques, Doc. Math., 16 (2011), 411455.CrossRefGoogle Scholar
Fausk, Halvard and Isaksen, Daniel C., T-model structures, Homology Homotopy Appl. , 9(1) (2007), 399438.Google Scholar
Hogadi, Amit and Kulkarni, Girish, Gabber’s presentation lemma for finite fields, J. Reine Angew. Math. , 759 (2020), 265289.CrossRefGoogle Scholar
Hovey, Mark, Palmieri, John H. and Strickland, Neil P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., 128 (1997), x+114.Google Scholar
Isaksen, Daniel C., A model structure on the category of pro-simplicial sets, Trans. Amer. Math. Soc. , 353(7) (2001), 28052841.CrossRefGoogle Scholar
Kahn, Bruno, Miyazaki, Hiroyasu, Saito, Shuji and Yamazaki, Takao, Motives with modulus, I: Modulus sheaves with transfers for non-proper modulus pairs, Épijournal Géom. Algébrique, 5 (2021), Art. 1.Google Scholar
Kahn, Bruno, Miyazaki, Hiroyasu, Saito, Shuji and Yamazaki, Takao, Motives with modulus, II: Modulus sheaves with transfers for proper modulus pairs, Épijournal Géom. Algébrique, 5 (2021), Art. 2.Google Scholar
Kahn, Bruno, Miyazaki, Hiroyasu, Saito, Shuji and Yamazaki, Takao, Motives with modulus, III: The categories of motives, Preprint 2020, https://arxiv.org/abs/2011.11859.Google Scholar
Kahn, Bruno, Saito, Shuji and Yamazaki, Takao, Reciprocity sheaves, Compos. Math., 152(9) (2016), 18511898. With two appendices by Rülling, Kay.CrossRefGoogle Scholar
Kahn, Bruno, Saito, Shuji and Yamazaki, Takao, Reciprocity sheaves, II, Preprint, 2019, https://arxiv.org/abs/1707.07398.Google Scholar
Kato, Fumiharo, Exactness, integrality, and log modifications. URL: https://arxiv.org/pdf/math/9907124.pdf.Google Scholar
Lurie, Jacob, Higher Algebra (2017). URL: https://www.math.ias.edu/~lurie/papers/HA.pdf.Google Scholar
MacLane, Saunders, Categories for the Working Mathematician , Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, Inc. (1971).Google Scholar
Mazza, Carlo, Voevodsky, Vladimir and Weibel, Charles, Lecture Notes on Motivic Cohomology, Clay Mathematics Monographs, Vol. 2 (American Mathematical Society, Providence, RI, 2006).Google Scholar
Merici, Alberto and Saito, Shuji, Cancellation theorems for reciprocity sheaves, Preprint, 2020, https://arxiv.org/abs/2001.07902.Google Scholar
Morel, Fabien, The stable ${A}^1$ -connectivity theorems, $K$ -Theory, 35(1–2) (2005), 1–68.CrossRefGoogle Scholar
Ogus, Arthur, Lectures on Logarithmic Algebraic Geometry, Cambridge Studies in Advanced Mathematics, Vol. 178 (Cambridge University Press, Cambridge, UK 2018).Google Scholar
Rülling, Kay and Saito, Shuji, Reciprocity sheaves and their ramification filtration, Preprint, 2019, https://arxiv.org/abs/1812.08716.Google Scholar
Rülling, Kay, Yamazaki, Takao and Sugiyama, Rin, Tensor structures in the theory of modulus presheaves with transfers, Preprint, 2019, https://arxiv.org/abs/1911.05291.Google Scholar
Saito, Shuji, Purity of reciprocity sheaves, Adv. Math. , 366 (2020), 170.CrossRefGoogle Scholar
Saito, Shuji, Reciprocity Sheaves and Logarithmic Motives, Preprint, 2020. http://www.lcv.ne.jp/~smaki/articles/RSClog-v2.pdf.Google Scholar
Serre, Jean-Pierre, Algebraic Groups and Class Fields , 2nd ed., Publications de l’Institut Mathématique de l’Université de Nancago [Publications of the Mathematical Institute of the University of Nancago], Vol. 7 (Hermann, Paris, 1984).Google Scholar
The Stacks Project Authors, Stacks Project. URL: https://stacks.math.columbia.edu, 2020.Google Scholar
Voevodsky, Vladimir, Triangulated categories of motives over a field , cycles, transfers, and motivic homology theories, in Ann. of Math. Stud., Vol. 143 (Princeton University Press, Princeton, NJ, 2000), pp. 188238.Google Scholar