The aerodynamic performance of conventional aircraft configurations are mainly affected by the wing and horizontal tail. Drag reduction by shape optimisation of the wing, while taking into account the aircraft trimmed constraint, has more benefit than focusing solely on the wing. So in order to evaluate this approach, the following study presents results of a single and multipoint aerodynamic shape optimisation of the wing-body-tail configuration, defined by the Aerodynamic Design Discussion Group (ADODG). Most of the aerodynamic shape optimisation problems published in the last years are focused mainly on the wing as the main driver for performance improvement, with no trim constraint and/or excess drag obtained from the fuselage, fins or other parts. This work partially fills this gap by an investigation of RANS-based aerodynamic optimisation for transonic trimmed flight. Mesh warping and geometry parametrisation is accomplished by fitting the multi-block structured grid to a B-spline volumes and performing the mesh movement by using surface control points embedded within the free-form deformation (FFD) volumes. A gradient-based optimisation algorithm is used with an adjoint method in order to compute the derivatives of the objective and constraint functions with respect to the design variables. In this work the aerodynamic shape optimisation of the CRM wing-body-tail configuration is investigated, including a trim constraint that is satisfied by rotating the horizontal tail. The shape optimisation is driven by 432 design variables that envelope the wing surface, and 120 shape variables for the tail, as well as the angle of attack and tail rotation angles. The constraints are the lift coefficient, wing’s thickness controlled by 1,000 control points, and the wing’s volume. For the untrimmed configuration the drag coefficient is reduced by 5.76%. Optimising the wing with a trim condition by tail rotation results in shock-free design with a considerably improved drag, even better than the untrimmed-optimised case. The second optimisation problem studied is a single and multi-point lift constraint drag minimisation of a gliding configuration wing in transonic viscous flow. The shock is eliminated, reducing the drag of the untrimmed configuration by more than 60%, using 192 design variables. Further robustness is achieved through a multi-point optimisation with more than 45% drag reduction.