Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-26T08:23:36.254Z Has data issue: false hasContentIssue false

Identification of clinical risk factors for coronary artery lesions in children with Kawasaki disease: a retrospective cohort study

Published online by Cambridge University Press:  05 November 2024

Xiangna Yang
Affiliation:
Department of Pediatric Traditional Chinese Medicine Clinic, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, China
Jiayi Zou
Affiliation:
The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
Hao Nie
Affiliation:
The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
Gang Zhang
Affiliation:
Department of Pediatric Traditional Chinese Medicine Clinic, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, China
Yin Liao
Affiliation:
College of Pediatrics, Guangzhou Medical University, Guangzhou, China
Jian Deng*
Affiliation:
Department of Pediatric Traditional Chinese Medicine Clinic, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong, China
Yanfei Wang*
Affiliation:
Department of Pediatric Cardiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
*
Corresponding authors: Jian Deng; Email: dengjian512@21cn.com; Yanfei Wang; Email: wangyanfei19831983@126.com
Corresponding authors: Jian Deng; Email: dengjian512@21cn.com; Yanfei Wang; Email: wangyanfei19831983@126.com

Abstract

Background:

Coronary artery lesions are the most severe complications of Kawasaki disease. Despite recent advances, evidence of the association between risk factors and coronary artery lesion is lacking. In this study, we demonstrated the potential clinical indicators that could assist to evaluate the prevalence of coronary artery lesion among paediatric patients with Kawasaki disease.

Methods:

We retrospectively enrolled 260 paediatric patients with Kawasaki disease. Patients with coronary dilation, coronary aneurysm, and intimal thickening of coronary arteries were included in this study. Medical records of each patient were collected. Logistic regression analysis was performed to explore risk factors and the occurrence of coronary artery lesion in patients with Kawasaki disease.

Results:

Respectively, 64 (24.6%), 39 (15%), and 56 patients (21.5%) of the participants had coronary dilation, coronary aneurysm, and intimal thickening of coronary arteries. Univariate analysis revealed that age, gender, duration of fever, time of initial use of intravenous immunoglobulin, erythrocyte sedimentation rate, white blood cell counts, time of platelet increase, the maximum value of platelet, albumin, and immunoglobulin G level was associated with coronary artery lesion. In multivariable logistic analysis, those younger and mainly males were associated with all three outcomes of coronary artery lesion, lower serum albumin levels, and later initial use of intravenous immunoglobulin were linked to a higher risk of coronary dilation and coronary aneurysm.

Conclusions:

The potential risk factors that could be used to estimate the occurrence of coronary artery lesion in Kawasaki disease patients are young age, male, lower serum albumin lever, and later initial use of intravenous immunoglobulin. However, long-term follow-up and multi-centre studies are required to verify our findings in the future.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Sadeghi, P, Izadi, A, Mojtahedi, SY, et al. A 10-year cross-sectional retrospective study on Kawasaki disease in Iranian children: incidence, clinical manifestations, complications, and treatment patterns. Bmc Infect Dis 2021; 21: 368.CrossRefGoogle ScholarPubMed
Saundankar, J, Yim, D, Itotoh, B, et al. The epidemiology and clinical features of Kawasaki disease in Australia. Pediatrics 2014; 133: e1009e1014.CrossRefGoogle ScholarPubMed
Maddox, RA, Parson, MK, Joseph, LJ, et al. Monitoring the occurrence of Kawasaki syndrome in the United States. In: Proceedings of the Eleventh International Kawasaki Disease Symposium, Hawaii, United States, 2015.CrossRefGoogle Scholar
Uehara, R, Belay, ED. Epidemiology of Kawasaki disease in Asia, Europe, and the United States. J Epidemiol 2012; 22: 7985.CrossRefGoogle ScholarPubMed
Makino, N, Nakamura, Y, Yashiro, M, et al. Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey. J Epidemiol 2015; 25: 239245.CrossRefGoogle ScholarPubMed
Huang, W-C, Huang, L-M, Chang, I-S, et al. Epidemiologic features of Kawasaki disease in Taiwan, 2003-2006. Pediatrics 2009; 123: e401e405.CrossRefGoogle ScholarPubMed
Chang, L-Y, Chang, I-S, Lu, C-Y, et al. Epidemiologic features of Kawasaki disease in Taiwan, 1996-2002. Pediatrics 2004; 114: e67882.CrossRefGoogle ScholarPubMed
Zhou, X, Wang, S, ZHao, Q, et al. Epidemiology of Kawasaki disease in children in Guangdong. Chin J Epidemiol 2003; 24: 7172.Google Scholar
DU, Z-D, ZHANG, T, LIANG, L, et al. Epidemiologic picture of Kawasaki disease in Beijing from 1995 through 1999. Pediatr Infect Dis J 2002; 21: 103107.CrossRefGoogle ScholarPubMed
Holman, RC, Christensen, KY, Belay, ED, et al. Racial/ethnic differences in the incidence of Kawasaki syndrome among children in Hawaii. Hawaii Med J 2010; 69: 194197.Google ScholarPubMed
Singh, S, Vignesh, P, Burgner, D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child 2015; 100: 10841088.CrossRefGoogle ScholarPubMed
Fujiwara, H, Hamashima, Y. Pathology of the heart in Kawasaki disease. Pediatrics 1978; 61: 100107.CrossRefGoogle ScholarPubMed
Nakamura, Y, Aso, E, Yashiro, M, et al. Mortality among persons with a history of Kawasaki disease in Japan: mortality among males with cardiac sequelae is significantly higher than that of the general population. Circ J 2008; 72: 134138.CrossRefGoogle ScholarPubMed
Nakamura, Y, Aso, E, Yashiro, M, et al. Mortality among Japanese with a history of Kawasaki disease: results at the end of 2009. J Epidemiol 2013; 23: 429434.CrossRefGoogle ScholarPubMed
Burns, JC, Shike, H, Gordon, JB, Malhotra, A, Schoenwetter, M, Kawasaki, T. Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol 1996; 28: 253257.CrossRefGoogle ScholarPubMed
Eleftheriou, D, Levin, M, Shingadia, D, Tulloh, R, Klein, N, Brogan, P. Management of kawasaki disease. Arch Dis Child 2014; 99: 7483.CrossRefGoogle ScholarPubMed
Newburger, JW, Takahashi, M, Gerber, MA, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American heart association. Circulation 2004; 110: 27472771.CrossRefGoogle Scholar
McCrindle, BW, Rowley, AH, Newburger, JW, et al. Diagnosis, treatment, and long-term management of kawasaki disease: a scientific statement for health professionals from the American heart association. Circulation 2017; 135: e927e999.CrossRefGoogle ScholarPubMed
Yang, M, Pei, Q, Zhang, J, Weng, H, Jing, F, Yi, Q. Association between adropin and coronary artery lesions in children with Kawasaki disease. Eur J Pediatr 2021; 180: 22532259.CrossRefGoogle ScholarPubMed
Kim, HJ, Choi, EH, Kil, HR. Association between adipokines and coronary artery lesions in children with kawasaki disease. J Korean Med Sci 2014; 29: 13851390.CrossRefGoogle ScholarPubMed
Shao, S, Zhou, K, Liu, X, et al. Predictive value of serum lipid for intravenous immunoglobulin resistance and coronary artery lesion in Kawasaki disease. J Clin Endocrinol Metab 2021; 106: e4210e4220.CrossRefGoogle ScholarPubMed
Ming, L, Cao, H-L, Li, Q, Yu, G. Red blood cell distribution width as a predictive marker for coronary artery lesions in patients with Kawasaki disease. Pediatr Cardiol 2021; 42: 14961503.CrossRefGoogle ScholarPubMed
Okuma, Y, Suda, K, Nakaoka, H, et al. Serum tenascin-C as a novel predictor for risk of coronary artery lesion and resistance to intravenous immunoglobulin in Kawasaki disease - a multicenter retrospective study. Circ J 2016; 80: 23762381.CrossRefGoogle ScholarPubMed
Senzaki, H, Kobayashi, T, Nagasaka, H, et al. Plasminogen activator inhibitor-1 in patients with Kawasaki disease: diagnostic value for the prediction of coronary artery lesion and implication for a new mode of therapy. Pediatr Res 2003; 53: 983988.CrossRefGoogle ScholarPubMed
Ohnishi, Y, Yasudo, H, Suzuki, Y, et al. Circulating endothelial glycocalyx components as a predictive marker of coronary artery lesions in Kawasaki disease. Int J Cardiol 2019; 292: 236240.CrossRefGoogle ScholarPubMed
Huiling, L, Yaping, L, Xiufen, H. Prediction of the risk of coronary arterial lesions in Kawasaki disease by N-terminal pro-brain natriuretic peptide. Chin J Pediatr 2015; 53: 300303.Google ScholarPubMed
Bilal, M, Haseeb, A, Saeed, A, Sher Khan, MA. The importance of serum N-terminal pro-brain natriuretic peptide and endogenous hydrogen sulfide for predicting coronary artery lesions in pediatric Kawasaki disease patients: findings from a tertiary care hospital in Karachi, Pakistan. Cureus 2020; 12: e9016.Google ScholarPubMed
Chen, YL, Wang, JL, Li, WQ. Prediction of the risk of coronary arterial lesions in Kawasaki disease by serum 25-hydroxyvitamin D3. Eur J Pediatr 2014; 173: 14671471.CrossRefGoogle ScholarPubMed
Chang, L-S, Lin, Y-J, Yan, J-H, et al. Neutrophil-to-lymphocyte ratio and scoring system for predicting coronary artery lesions of Kawasaki disease. BMC Pediatr 2020; 20: 398.CrossRefGoogle ScholarPubMed
Hua, W, Ma, F, Wang, Y, et al. A new scoring system to predict Kawasaki disease with coronary artery lesions. Clin Rheumatol 2019; 38: 10991107.CrossRefGoogle ScholarPubMed
Cho, HJ, Kim, WY, Park, SM, et al. The risk prediction of coronary artery lesions through the novel hematological Z-values in 4 Chronological age subgroups of Kawasaki disease. Medicina 2020; 56: 466.CrossRefGoogle ScholarPubMed
Lega, JC, Bozio, A, Cimaz, R, et al. Extracoronary echocardiographic findings as predictors of coronary artery lesions in the initial phase of Kawasaki disease. Arch Dis Child 2013; 98: 97102.CrossRefGoogle ScholarPubMed
Sun, Y, Yuan, Y, Yan, H, et al. Plasma H2S predicts coronary artery lesions in children with Kawasaki disease. Pediatr Int 2015; 57: 840844.CrossRefGoogle ScholarPubMed
Al-Subaie, N, Reynolds, T, Myers, A, et al. C-reactive protein as a predictor of outcome after discharge from the intensive care: a prospective observational study. Br J Anaesth 2010; 105: 318325.CrossRefGoogle ScholarPubMed
Terai, M, Honda, T, Yasukawa, K, Higashi, K, Hamada, H, Kohno, Y. Prognostic impact of vascular leakage in acute Kawasaki disease. Circulation 2003; 108: 325330.CrossRefGoogle ScholarPubMed
Maeno, N, Takei, S, Masuda, K, et al. Increased serum levels of vascular endothelial growth factor in Kawasaki disease. Pediatr Res 1998; 44: 596599.CrossRefGoogle ScholarPubMed
Kariyazono, H, Ohno, T, Khajoee, V, et al. Association of vascular endothelial growth factor (VEGF) and VEGF receptor gene polymorphisms with coronary artery lesions of Kawasaki disease. Pediatr Res 2004; 56: 953959.CrossRefGoogle ScholarPubMed
Mori, M, Imagawa, T, Yasui, K, Kanaya, A, Yokota, S. Predictors of coronary artery lesions after intravenous gamma-globulin treatment in Kawasaki disease. J Pediatr 2000; 137: 177180.CrossRefGoogle ScholarPubMed
Ashouri, N, Takahashi, M, Dorey, F, Mason, W. Risk factors for nonresponse to therapy in Kawasaki disease. J Pediatr 2008; 153: 365368.CrossRefGoogle ScholarPubMed
Tremoulet, AH, Best, BM, Song, S, et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease. J Pediatr 2008; 153: 117121.CrossRefGoogle ScholarPubMed
Ruan, Y, Ye, B, Zhao, X. Clinical characteristics of Kawasaki syndrome and the risk factors for coronary artery lesions in China. Pediatr Infect Dis J 2013; 32: e397402.CrossRefGoogle ScholarPubMed
JCS Joint Working Group. Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2013). Digest version. CIrc J 2014; 78: 25212562.CrossRefGoogle Scholar
Egami, K, Muta, H, Ishii, M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr 2006; 149: 237240.CrossRefGoogle ScholarPubMed
Durongpisitkul, K, Soongswang, J, Laohaprasitiporn, D, Nana, A, Prachuabmoh, C, Kangkagate, C. Immunoglobulin failure and retreatment in Kawasaki disease. Pediatr Cardiol 2003; 24: 145148.CrossRefGoogle ScholarPubMed
Onouchi, Y, Suzuki, Y, Suzuki, H, et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease. Pharmacogenomics J 2013; 13: 5259.CrossRefGoogle ScholarPubMed
Lee, Y-C, Kuo, H-C, Chang, J-S, et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet 2012; 44: 522525.CrossRefGoogle ScholarPubMed
Wang, Y, Wang, W, Gong, F, et al. Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profiles in patients with Kawasaki disease. Arthritis Rheum 2013; 65: 805814.CrossRefGoogle ScholarPubMed
Kobayashi, T, Inoue, Y, Takeuchi, K, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 2006; 113: 26062612.CrossRefGoogle ScholarPubMed
Daniels, LB, Tjajadi, MS, Walford, HH, et al. Prevalence of Kawasaki disease in young adults with suspected myocardial ischemia. Circulation 2012; 125: 24472453.CrossRefGoogle Scholar
Tissandier, C, Lang, M, Lusson, J, Bœuf, B, Merlin, E, Dauphin, C. Kawasaki shock syndrome complicating a recurrence of Kawasaki disease. Pediatrics 2014; 134: e1695e1699.CrossRefGoogle ScholarPubMed