1 Introduction
In optimal transport, a condition known as A3w is necessary for regularity of the optimal transport map. Here we provide a geometric interpretation of A3w. We use freely the notation from [Reference Ma, Trudinger and Wang4]. Let $c \in C^2(\mathbf {R}^n \times \mathbf {R}^n)$ satisfy A1 and A2 (see Section 2). Keeping in mind the prototypical case $c(x,y) = |x-y|^2$ , we fix $x_0,y_0 \in \mathbf {R}^n$ and perform a linear transformation so that $c_{xy}(x_0,y_0) = -I$ . Define coordinates
and denote the inverse transformations by $x(q),y(p)$ . Write $c(q,p) = c(x(q),y(p))$ and let $q_0=q(x_0)$ and $p_0=p(\,y_0)$ . We prove A3w is satisfied if and only if whenever these transformations are performed,
Heuristically, A3w implies that when $q-q_0$ ‘points in the same direction’ as $p-p_0$ , it is cheaper to transport q to p and $q_0$ to $p_0$ than the alternative q to $p_0$ and $q_0$ to p. Thus, A3w represents compatibility between directions in the cost-convex geometry and the cost of transport.
A3w first appeared (in a stronger form) in [Reference Ma, Trudinger and Wang4]. It was weakened in [Reference Trudinger and Wang6] and a new interpretation was given in [Reference Loeper2]. The impetus for the above interpretation is Lemma 2.1 in [Reference Chen and Wang1]. Our result can also be realised by a particular choice of c-convex function in the unpublished preprint [Reference Trudinger and Wang5].
2 Proof of result
Let $c \in C^2(\mathbf {R}^n \times \mathbf {R}^n)$ satisfy the following well-known conditions.
-
A1. For each $x_0,y_0 \in \mathbf {R}^n$ , the mappings
$$ \begin{align*} x \mapsto c_y(x,y_0) \quad\text{and} \quad y \mapsto c_x(x_0,y) \end{align*} $$are injective. -
A2. For each $x_0,y_0 \in \mathbf {R}^n$ , we have $\det c_{i,j}(x_0,y_0) \neq 0$ .
Here, and throughout, subscripts before a comma denote differentiation with respect to the first variable, subscripts after a comma denote differentiation with respect to the second variable.
By A1, we define on $\mathcal {U}:= \{(x,c_x(x,y)): x,y \in \mathbf {R}^n\}$ a mapping $Y:\mathcal {U}\rightarrow \mathbf {R}^n$ by
The A3w condition, usually expressed with fourth derivatives but written here as in [Reference Loeper and Trudinger3], is the following statement.
-
A3w. Fix x. The function
$$ \begin{align*} p \mapsto c_{ij}(x,Y(x,p))\xi_i\xi_j\end{align*} $$is concave along line segments orthogonal to $\xi $ .
To verify A3w, it suffices to verify the midpoint concavity, that is, whenever ${\xi \cdot \eta = 0}$ , it follows that
Finally, we recall that a set $A \subset \mathbf {R}^n$ is called c-convex with respect to $y_0$ provided $c_y(A,y_0)$ is convex. When the A3w condition is satisfied and $y,y_0 \in \mathbf {R}^n$ are given, the section $\{x \in \mathbf {R}^n: c(x,y)> c(x,y_0)\}$ is c-convex with respect to $y_0$ [Reference Loeper and Trudinger3].
Now fix $(x_0,p_0) \in \mathcal {U}$ and $y_0 = Y(x_0,p_0)$ . To simplify the proof, we assume $x_0,y_0,q_0,p_0 = 0$ . Up to an affine transformation (replace y with $\tilde {y}:=-c_{xy}(0,0)y$ ), we assume $c_{xy}(0,0) = -I$ . Note that with $q,p$ , as defined in (1.1), (1.2), this implies ${\partial q}/{\partial x}(0) = I$ . Put
Theorem 2.1. The A3w condition is satisfied if and only if whenever the above transformations are applied, the following implication holds:
Proof. Observe by a Taylor series
for some $\tau \in (0,1)$ . First, assume A3w and let $q \cdot p> 0$ . By (2.3), we have $\overline {c}(-tq,p)> 0 > \overline {c}(tq,p)$ for $t>0$ sufficiently small. If $\overline {c}(q,p)> 0$ , then the c-convexity (in our coordinates, convexity) of the section
is violated. By continuity, $\overline {c}(q,p) \leq 0$ whenever $q \cdot p \geq 0$ .
In the other direction, take nonzero q with $q \cdot p = 0$ and small t. By (2.2) and (2.3),
This inequality also holds with $-p$ . Moreover, $\overline {c}_{ij}(t \tau q, 0) = 0$ . Thus,
Sending $t \rightarrow 0$ and returning to our original coordinates, we obtain (2.1).
Remark 2.2. On a Riemannian manifold with $c(x,y) = d(x,y)^2$ , for d the distance function, Loeper [Reference Loeper2] proved A3w implies nonnegative sectional curvature. Our result expedites his proof. Let $x_0=y_0 \in M$ and $u,v \in T_{x_0}M$ satisfy $u\cdot v = 0$ with $x = \exp _{x_0}(tu)$ and $y=\exp _{x_0}(tv)$ . Working in a sufficiently small local coordinate chart, our previous proof implies that if A3w is satisfied,
The sectional curvature in the plane generated by $u,v$ is the $\kappa $ satisfying
whereby comparison with (2.4) proves the result. (See [Reference Villani7, Equation (1)] for (2.5).) We note Loeper proved his result using an infinitesimal version of (2.4).
Acknowledgements
My thanks to Jiakun Liu and Robert McCann for helpful comments and discussion.