Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T21:35:20.777Z Has data issue: false hasContentIssue false

We know what stops you from thinking forever: A metacognitive perspective

Published online by Cambridge University Press:  18 July 2023

Rakefet Ackerman
Affiliation:
Faculty of Data and Decision Sciences, Technion – Israel Institute of Technology, Haifa, Israel ackerman@technion.ac.il; technion.ac.il
Kinga Morsanyi
Affiliation:
Centre for Mathematical Cognition, Loughborough University, Loughborough, UK k.e.morsanyi@lboro.ac.uk; lboro.ac.uk

Abstract

This commentary addresses omissions in De Neys's model of fast-and-slow thinking from a metacognitive perspective. We review well-established meta-reasoning monitoring (e.g., confidence) and control processes (e.g., rethinking) that explain mental effort regulation. Moreover, we point to individual, developmental, and task design considerations that affect this regulation. These core issues are completely ignored or mentioned in passing in the target article.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, R. (2014). The diminishing criterion model for metacognitive regulation of time investment. Journal of Experimental Psychology: General, 143(3), 13491368.10.1037/a0035098CrossRefGoogle ScholarPubMed
Ackerman, R. (2019). Heuristic cues for meta-reasoning judgments: Review and methodology. Psychological Topics, 28(1), 120.Google Scholar
Ackerman, R., & Thompson, V. (2017). Meta-reasoning: Monitoring and control of thinking and reasoning. Trends in Cognitive Sciences, 21(8), 607617.10.1016/j.tics.2017.05.004CrossRefGoogle ScholarPubMed
Ackerman, R., Yom-Tov, E., & Torgovitsky, I. (2020). Using confidence and consensuality to predict time invested in problem solving and in real-life web searching. Cognition, 199, 104248.10.1016/j.cognition.2020.104248CrossRefGoogle ScholarPubMed
Beilock, S. L., & DeCaro, M. S. (2007). From poor performance to success under stress: Working memory, strategy selection, and mathematical problem solving under pressure. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(6), 983998.Google ScholarPubMed
Cacioppo, J. T., Petty, R. E., Feinstein, J. A., & Jarvis, W. B. G. (1996). Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychological Bulletin, 119, 197253.10.1037/0033-2909.119.2.197CrossRefGoogle Scholar
Chiesi, F., Primi, C., & Morsanyi, K. (2011). Developmental changes in probabilistic reasoning: The role of cognitive capacity, instructions, thinking styles, and relevant knowledge. Thinking & Reasoning, 17(3), 315350.10.1080/13546783.2011.598401CrossRefGoogle Scholar
De Neys, W. (2006). Dual processing in reasoning: Two systems but one reasoner. Psychological Science, 17(5), 428433.10.1111/j.1467-9280.2006.01723.xCrossRefGoogle ScholarPubMed
Evans, J. S. B. (2006). The heuristic-analytic theory of reasoning: Extension and evaluation. Psychonomic Bulletin & Review, 13(3), 378395.10.3758/BF03193858CrossRefGoogle ScholarPubMed
Ferreira, M. B., Garcia-Marques, L., Sherman, S. J., & Sherman, J. W. (2006). Automatic and controlled components of judgment and decision making. Journal of Personality and Social Psychology, 91, 797813.10.1037/0022-3514.91.5.797CrossRefGoogle ScholarPubMed
Fiedler, K., Ackerman, R., & Scarampi, C. (2019). Metacognition: Monitoring and controlling one's own knowledge, reasoning and decisions. In Sternberg, R. J. & Funke, J. (Eds.), Introduction to the psychology of human thought (pp. 89111). Heidelberg University Publishing.Google Scholar
Fischbein, E. (1987). Intuition in science and mathematics. Reidel.Google Scholar
Gauvrit, N., & Morsanyi, K. (2014). The equiprobability bias from a mathematical and psychological perspective. Advances in Cognitive Psychology, 10, 119130.10.5709/acp-0163-9CrossRefGoogle ScholarPubMed
Hawkins, G. E., & Heathcote, A. (2021). Racing against the clock: Evidence-based versus time-based decisions. Psychological Review, 128(2), 222263.10.1037/rev0000259CrossRefGoogle ScholarPubMed
Koriat, A. (1997). Monitoring one's own knowledge during study: A cue-utilization approach to judgments of learning. Journal of Experimental Psychology: General, 126, 349370.10.1037/0096-3445.126.4.349CrossRefGoogle Scholar
Koriat, A., Ackerman, R., Adiv, S., Lockl, K., & Schneider, W. (2014). The effects of goal-driven and data-driven regulation on metacognitive monitoring during learning: A developmental perspective. Journal of Experimental Psychology: General, 143(1), 386403.10.1037/a0031768CrossRefGoogle ScholarPubMed
Koriat, A., & Goldsmith, M. (1996). Monitoring and control processes in the strategic regulation of memory accuracy. Psychological Review, 103(3), 490517.10.1037/0033-295X.103.3.490CrossRefGoogle ScholarPubMed
Metcalfe, J., & Kornell, N. (2005). A region of proximal learning model of study time allocation. Journal of Memory and Language, 52(4), 463477.10.1016/j.jml.2004.12.001CrossRefGoogle Scholar
Morsanyi, K., Busdraghi, C., & Primi, C. (2014). Mathematical anxiety is linked to reduced cognitive reflection: A potential road from discomfort in the mathematics classroom to susceptibility to biases. Behavioral and Brain Functions 2014, 10, 31.10.1186/1744-9081-10-31CrossRefGoogle Scholar
Morsanyi, K., & Handley, S. J. (2008). How smart do you need to be to get it wrong? The role of cognitive capacity in the development of heuristic-based judgment. Journal of Experimental Child Psychology, 99, 1836.10.1016/j.jecp.2007.08.003CrossRefGoogle Scholar
Morsanyi, K., Primi, C., Chiesi, F., & Handley, S. J. (2009). The effects and side-effects of statistics education. Psychology students’ (mis-)conceptions of probability. Contemporary Educational Psychology, 34, 210220.10.1016/j.cedpsych.2009.05.001CrossRefGoogle Scholar
Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In Bower, G. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 26, pp. 125173). Academic Press.Google Scholar
Osman, M., & Stavy, M. O. R. (2006). Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children’s intuitive reasoning. Psychonomic Bulletin & Review, 13, 935953.10.3758/BF03213907CrossRefGoogle ScholarPubMed
Primi, C., Donati, M., Chiesi, F., & Morsanyi, K. (2018). Are there gender differences in cognitive reflection? Invariance and differences related to mathematics. Thinking & Reasoning, 24, 258279.10.1080/13546783.2017.1387606CrossRefGoogle Scholar
Sidi, Y., Shpigelman, M., Zalmanov, H., & Ackerman, R. (2017). Understanding metacognitive inferiority on screen by exposing cues for depth of processing. Learning and Instruction, 51, 6173.10.1016/j.learninstruc.2017.01.002CrossRefGoogle Scholar
Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23(5), 645665.10.1017/S0140525X00003435CrossRefGoogle ScholarPubMed
Stanovich, K. E., & West, R. F. (2008). On the relative independence of thinking biases and cognitive ability. Journal of Personality and Social Psychology, 94(4), 672695.10.1037/0022-3514.94.4.672CrossRefGoogle ScholarPubMed
Thompson, V., Prowse Turner, J., Pennycook, G., Ball, L., Brack, H., Ophir, Y., & Ackerman, R. (2013). The role of answer fluency and perceptual fluency as metacognitive cues for initiating analytic thinking. Cognition, 128, 237251.10.1016/j.cognition.2012.09.012CrossRefGoogle ScholarPubMed
Thompson, V. A., Prowse Turner, J. A., & Pennycook, G. (2011). Intuition, reason, and metacognition. Cognitive Psychology, 63(3), 107140.10.1016/j.cogpsych.2011.06.001CrossRefGoogle ScholarPubMed
Undorf, M., & Bröder, A. (2021). Metamemory for pictures of naturalistic scenes: Assessment of accuracy and cue utilization. Memory & Cognition, 49(7), 14051422.10.3758/s13421-021-01170-5CrossRefGoogle ScholarPubMed
Undorf, M., Livneh, I., & Ackerman, R. (2021). Metacognitive control processes in question answering: Help seeking and withholding answers. Metacognition & Learning, 16, 431458.10.1007/s11409-021-09259-7CrossRefGoogle Scholar