We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Structural convergence is a framework for the convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs $(G_n)$ converging to a limit $L$ and a vertex $r$ of $L$, it is possible to find a sequence of vertices $(r_n)$ such that $L$ rooted at $r$ is the limit of the graphs $G_n$ rooted at $r_n$. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices $r$ of $L$. We offer another perspective on the original problem by considering the size of definable sets to which the root $r$ belongs. We prove that if $r$ is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots $(r_n)$ always exists.
In this article, we investigate the topological structure of large-scale interacting systems on infinite graphs, by constructing a suitable cohomology which we call the uniform cohomology. The central idea for the construction is the introduction of a class of functions called uniform functions. Uniform cohomology provides a new perspective for the identification of macroscopic observables from the microscopic system. As a straightforward application of our theory when the underlying graph has a free action of a group, we prove a certain decomposition theorem for shift-invariant closed uniform forms. This result is a uniform version in a very general setting of the decomposition result for shift-invariant closed $L^2$-forms originally proposed by Varadhan, which has repeatedly played a key role in the proof of the hydrodynamic limits of nongradient large-scale interacting systems. In a subsequent article, we use this result as a key to prove Varadhan’s decomposition theorem for a general class of large-scale interacting systems.
We characterize Borel line graphs in terms of 10 forbidden induced subgraphs, namely the nine finite graphs from the classical result of Beineke together with a 10th infinite graph associated with the equivalence relation $\mathbb {E}_0$ on the Cantor space. As a corollary, we prove a partial converse to the Feldman–Moore theorem, which allows us to characterize all locally countable Borel line graphs in terms of their Borel chromatic numbers.
We investigate the effect of adding $\omega _2$ Cohen reals on graphs on $\omega _2$, in particular we show that $\omega _2 \to (\omega _2, \omega : \omega )^2$ holds after forcing with $\mathsf {Add}(\omega , \omega _2)$ in a model of $\mathsf {CH}$. We also prove that this result is in a certain sense optimal as $\mathsf {Add}(\omega , \omega _2)$ forces that $\omega _2 \not \to (\omega _2, \omega : \omega _1)^2$.
For a fixed infinite graph $H$, we study the largest density of a monochromatic subgraph isomorphic to $H$ that can be found in every two-colouring of the edges of $K_{\mathbb{N}}$. This is called the Ramsey upper density of $H$ and was introduced by Erdős and Galvin in a restricted setting, and by DeBiasio and McKenney in general. Recently [4], the Ramsey upper density of the infinite path was determined. Here, we find the value of this density for all locally finite graphs $H$ up to a factor of 2, answering a question of DeBiasio and McKenney. We also find the exact density for a wide class of bipartite graphs, including all locally finite forests. Our approach relates this problem to the solution of an optimisation problem for continuous functions. We show that, under certain conditions, the density depends only on the chromatic number of $H$, the number of components of $H$ and the expansion ratio $|N(I)|/|I|$ of the independent sets of $H$.
We use tools from free probability to study the spectra of Hermitian operators on infinite graphs. Special attention is devoted to universal covering trees of finite graphs. For operators on these graphs, we derive a new variational formula for the spectral radius and provide new proofs of results due to Sunada and Aomoto using free probability.
With the goal of extending the applicability of free probability techniques beyond universal covering trees, we introduce a new combinatorial product operation on graphs and show that, in the noncommutative probability context, it corresponds to the notion of freeness with amalgamation. We show that Cayley graphs of amalgamated free products of groups, as well as universal covering trees, can be constructed using our graph product.
Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR
$_{0}$
(and so
$\Pi _{1}^{1}$
-CA
$_{0}$
or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In this paper we introduce a new neighborhood of theorems which are almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA
$_{0}$
they are THAs but on their own they are very weak. We generalize several conservativity classes (
$\Pi _{1}^{1}$
, r-
$\Pi _{2}^{1}$
, and Tanaka) and show that all our examples (and many others) are conservative over RCA
$_{0}$
in all these senses and weak in other recursion theoretic ways as well. We provide denizens, both mathematical and logical. These results answer a question raised by Hirschfeldt and reported in Montalbán [2011] by providing a long list of pairs of principles one of which is very weak over RCA
$_{0}$
but over ACA
$_{0}$
is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second order arithmetic.
We investigate Maker–Breaker games on graphs of size
$\aleph _1$
in which Maker’s goal is to build a copy of the host graph. We establish a firm dependence of the outcome of the game on the axiomatic framework. Relating to this, we prove that there is a winning strategy for Maker in the
$K_{\omega ,\omega _1}$
-game under ZFC+MA+
$\neg $
CH and a winning strategy for Breaker under ZFC+CH. We prove a similar result for the
$K_{\omega _1}$
-game. Here, Maker has a winning strategy under ZF+DC+AD, while Breaker has one under ZFC+CH again.
Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing jump but below ATR
$_{0}$
(and so
$\Pi _{1}^{1}$
-CA
$_{0}$
or the hyperjump). There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They seem to be typical applications of ACA
$_{0}$
but are actually THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse Mathematics [19] and supply several other natural principles of different and unusual levels of complexity.
This work led in [25] to a new neighborhood of the reverse mathematical zoo: almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA
$_{0}$
they are THAs but on their own are very weak. Denizens both mathematical and logical are provided. Generalizations of several conservativity classes (
$\Pi _{1}^{1}$
, r-
$\Pi _{1}^{1}$
, and Tanaka) are defined and these ATHAs as well as many other principles are shown to be conservative over RCA
$_{0}$
in all these senses and weak in other recursion-theoretic ways as well. These results answer a question raised by Hirschfeldt and reported in [19] by providing a long list of pairs of principles one of which is very weak over RCA
$_{0}$
but over ACA
$_{0}$
is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second-order arithmetic.
We present infinite analogues of our splinter lemma for constructing nested sets of separations. From these we derive several tree-of-tangles-type theorems for infinite graphs and infinite abstract separation systems.
We consider a stochastic matching model with a general compatibility graph, as introduced by Mairesse and Moyal (2016). We show that the natural necessary condition of stability of the system is also sufficient for the natural ‘first-come, first-matched’ matching policy. To do so, we derive the stationary distribution under a remarkable product form, by using an original dynamic reversibility property related to that of Adan, Bušić, Mairesse, and Weiss (2018) for the bipartite matching model.
Spatial random graphs capture several important properties of real-world networks. We prove quenched results for the continuous-space version of scale-free percolation introduced in [14]. This is an undirected inhomogeneous random graph whose vertices are given by a Poisson point process in $\mathbb{R}^d$. Each vertex is equipped with a random weight, and the probability that two vertices are connected by an edge depends on their weights and on their distance. Under suitable conditions on the parameters of the model, we show that, for almost all realizations of the point process, the degree distributions of all the nodes of the graph follow a power law with the same tail at infinity. We also show that the averaged clustering coefficient of the graph is self-averaging. In particular, it is almost surely equal to the annealed clustering coefficient of one point, which is a strictly positive quantity.
We consider a simple preferential attachment graph process, which begins with a finite graph and in which a new (t + 1)st vertex is added at each subsequent time step t that is connected to each previous vertex u ≤ t with probability du(t)/t, where du(t) is the degree of u at time t. We analyse the graph obtained as the infinite limit of this process, and we show that, as long as the initial finite graph is neither edgeless nor complete, with probability 1 the outcome will be a copy of the Rado graph augmented with a finite number of either isolated or universal vertices.
We prove that the class of reflexive asymptotic-$c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic-$c_{0}$ space $Y$, then $X$ is also reflexive and asymptotic-$c_{0}$. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-$c_{0}$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.
Based on a simple object, an i.i.d. sequence of positive integer-valued random variables {an}n∊ℤ, we introduce and study two random structures and their connections. First, a population dynamics, in which each individual is born at time n and dies at time n + an. This dynamics is that of a D/GI/∞ queue, with arrivals at integer times and service times given by {an}n∊ℤ. Second, the directed random graph Tf on ℤ generated by the random map f(n) = n + an. Assuming only that E [a0] < ∞ and P [a0 = 1] > 0, we show that, in steady state, the population dynamics is regenerative, with one individual alive at each regeneration epoch. We identify a unimodular structure in this dynamics. More precisely, Tf is a unimodular directed tree, in which f(n) is the parent of n. This tree has a unique bi-infinite path. Moreover, Tf splits the integers into two categories: ephemeral integers, with a finite number of descendants of all degrees, and successful integers, with an infinite number. Each regeneration epoch is a successful individual such that all integers less than it are its descendants of some order. Ephemeral, successful, and regeneration integers form stationary and mixing point processes on ℤ.
We explore a general method based on trees of elementary submodels in order to present highly simplified proofs to numerous results in infinite combinatorics. While countable elementary submodels have been employed in such settings already, we significantly broaden this framework by developing the corresponding technique for countably closed models of size continuum. The applications range from various theorems on paradoxical decompositions of the plane, to coloring sparse set systems, results on graph chromatic number and constructions from point-set topology. Our main purpose is to demonstrate the ease and wide applicability of this method in a form accessible to anyone with a basic background in set theory and logic.
A relational structure is called reversible iff each bijective endomorphism (condensation) of that structure is an automorphism. We show that reversibility is an invariant of some forms of L∞ω −bi-interpretability, implying that the condensation monoids of structures are topologically isomorphic. Applying these results, we prove that, in particular, all orbits of ultrahomogeneous tournaments and reversible ultrahomogeneous m-uniform hypergraphs are reversible relations and that the same holds for the orbits of reversible ultrahomogeneous digraphs definable by formulas which are not R-negative.
We define a pseudometric on the set of all unbounded subsets of a metric space. The Kolmogorov quotient of this pseudometric space is a complete metric space. The definition of the pseudometric is guided by the principle that two unbounded subsets have distance 0 whenever they stay sublinearly close. Based on this pseudometric we introduce and study a general concept of boundaries of metric spaces. Such a boundary is the closure of a subset in the Kolmogorov quotient determined by an arbitrarily chosen family of unbounded subsets. Our interest lies in those boundaries which we get by choosing unbounded cyclic sub(semi)groups of a finitely generated group (or more general of a compactly generated, locally compact Hausdorff group). We show that these boundaries are quasi-isometric invariants and determine them in the case of nilpotent groups as a disjoint union of certain spheres (or projective spaces). In addition we apply this concept to vertex-transitive graphs with polynomial growth and to random walks on nilpotent groups.
A colouring of a graph G is called distinguishing if its stabilizer in Aut G is trivial. It has been conjectured that, if every automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2-colouring. We study properties of random 2-colourings of locally finite graphs and show that the stabilizer of such a colouring is almost surely nowhere dense in Aut G and a null set with respect to the Haar measure on the automorphism group. We also investigate random 2-colourings in several classes of locally finite graphs where the existence of a distinguishing 2-colouring has already been established. It turns out that in all of these cases a random 2-colouring is almost surely distinguishing.