We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted $\Sigma _L(P)$, is a left weak Bruhat interval in the symmetric group $\mathfrak {S}_{|P|}$. We describe the permutations in $\Sigma _L(P)$ in terms of reading words of standard Young tableaux when P is a regular Schur labeled skew shape poset, and classify $\Sigma _L(P)$’s up to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape posets. The results obtained are then applied to classify the $0$-Hecke modules $\mathsf {M}_P$ associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of $\mathfrak {S}_{|P|}$. Using this characterization, we construct distinguished filtrations of $\mathsf {M}_P$ with respect to the Schur basis when P is a regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the $0$-Hecke modules $\mathsf {M}_P$ are also discussed.
Let ${\mathbf {x}}_{n \times n}$ be an $n \times n$ matrix of variables, and let ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ be the polynomial ring in these variables over a field ${\mathbb {F}}$. We study the ideal $I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$ generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ is the generating function of permutations in ${\mathfrak {S}}_n$ by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also calculate the structure of ${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$ as a graded ${\mathfrak {S}}_n \times {\mathfrak {S}}_n$-module.
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$. The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.
We study analogues of Kronecker coefficients for symmetric inverse semigroups, for dual symmetric inverse semigroups and for the inverse semigroups of bijections between subquotients of finite sets. In all cases, we reduce the problem of determination of such coefficients to some group-theoretic and combinatorial problems. For symmetric inverse semigroups, we provide an explicit formula in terms of the classical Kronecker and Littlewood–Richardson coefficients for symmetric groups.
In this paper, we give Pieri rules for skew dual immaculate functions and their recently discovered row-strict counterparts. We establish our rules using a right-action analogue of the skew Littlewood–Richardson rule for Hopf algebras of Lam–Lauve–Sottile. We also obtain Pieri rules for row-strict (dual) immaculate functions.
We introduce a generalization of immanants of matrices, using partition algebra characters in place of symmetric group characters. We prove that our immanant-like function on square matrices, which we refer to as the recombinant, agrees with the usual definition for immanants for the special case whereby the vacillating tableaux associated with the irreducible characters correspond, according to the Bratteli diagram for partition algebra representations, to the integer partition shapes for symmetric group characters. In contrast to previously studied variants and generalizations of immanants, as in Temperley–Lieb immanants and f-immanants, the sum that we use to define recombinants is indexed by a full set of partition diagrams, as opposed to permutations.
We give an elementary symmetric function expansion for the expressions $M\Delta _{m_\gamma e_1}\Pi e_\lambda ^{\ast }$ and $M\Delta _{m_\gamma e_1}\Pi s_\lambda ^{\ast }$ when $t=1$ in terms of what we call $\gamma $-parking functions and lattice $\gamma $-parking functions. Here, $\Delta _F$ and $\Pi $ are certain eigenoperators of the modified Macdonald basis and $M=(1-q)(1-t)$. Our main results, in turn, give an elementary basis expansion at $t=1$ for symmetric functions of the form $M \Delta _{Fe_1} \Theta _{G} J$ whenever F is expanded in terms of monomials, G is expanded in terms of the elementary basis, and J is expanded in terms of the modified elementary basis $\{\Pi e_\lambda ^\ast \}_\lambda $. Even the most special cases of this general Delta and Theta operator expression are significant; we highlight a few of these special cases. We end by giving an e-positivity conjecture for when t is not specialized, proposing that our objects can also give the elementary basis expansion in the unspecialized symmetric function.
The $\Delta $-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood expansion formula for the graded Frobenius characteristic of the cohomology ring of a $\Delta $-Springer variety. We do this by interpreting the Frobenius characteristic in terms of counting points over a finite field $\mathbb {F}_q$ and partitioning the $\Delta $-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion of the symmetric function in the Delta Conjecture at $t=0$.
A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category $\mathrm {Vect}(\mathbb {F}_1)$ of vector spaces “over $\mathbb {F}_1$” (the field with one element), one obtains $\mathbb {F}_1$-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category $\mathrm {Rep}(Q,\mathbb {F}_1)$ is equivalent to the (suitably defined) category of coefficient quivers over Q. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “$\mathbb {F}_1$-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with $\mathbb {F}_1$-representations. These techniques apply to a large class of $\mathbb {F}_1$-representations, which we call the $\mathbb {F}_1$-representations with finite nice length: we prove sufficient conditions for an $\mathbb {F}_1$-representation to have finite nice length, and classify such representations for certain families of quivers. Finally, we explore the Hall algebras associated with $\mathbb {F}_1$-representations of quivers. We answer the question of how a change in orientation affects the Hall algebra of nilpotent $\mathbb {F}_1$-representations of a quiver with bounded representation type. We also discuss Hall algebras associated with representations with finite nice length, and compute them for certain families of quivers.
Let G be a complex classical group, and let V be its defining representation (possibly plus a copy of the dual). A foundational problem in classical invariant theory is to write down generators and relations for the ring of G-invariant polynomial functions on the space $\mathcal P^m(V)$ of degree-m homogeneous polynomial functions on V. In this paper, we replace $\mathcal P^m(V)$ with the full polynomial algebra $\mathcal P(V)$. As a result, the invariant ring is no longer finitely generated. Hence, instead of seeking generators, we aim to write down linear bases for bigraded components. Indeed, when G is of sufficiently high rank, we realize these bases as sets of graphs with prescribed number of vertices and edges. When the rank of G is small, there arise complicated linear dependencies among the graphs, but we remedy this setback via representation theory: in particular, we determine the dimension of an arbitrary component in terms of branching multiplicities from the general linear group to the symmetric group. We thereby obtain an expression for the bigraded Hilbert series of the ring of invariants on $\mathcal P(V)$. We conclude with examples using our graphical notation, several of which recover classical results.
Iterating the skew RSK correspondence discovered by Sagan and Stanley in the late 1980s, we define deterministic dynamics on the space of pairs of skew Young tableaux $(P,Q)$. We find that these skew RSK dynamics display conservation laws which, in the picture of Viennot’s shadow line construction, identify generalizations of Greene invariants. The introduction of a novel realization of $0$-th Kashiwara operators reveals that the skew RSK dynamics possess symmetries induced by an affine bicrystal structure, which, combined with connectedness properties of Demazure crystals, leads to the linearization of the time evolution. Studying asymptotic evolution of the dynamics started from a pair of skew tableaux $(P,Q)$, we discover a new bijection $\Upsilon : (P,Q) \mapsto (V,W; \kappa , \nu )$. Here, $(V,W)$ is a pair of vertically strict tableaux, that is, column strict fillings of Young diagrams with no condition on rows, with the shape prescribed by the Greene invariant, $\kappa $ is an array of nonnegative weights and $\nu $ is a partition. An application of this construction is the first bijective proof of Cauchy and Littlewood identities involving q-Whittaker polynomials. New identities relating sums of q-Whittaker and Schur polynomials are also presented.
In 1968, Steinberg [Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968)] proved a theorem stating that the exterior powers of an irreducible reflection representation of a Euclidean reflection group are again irreducible and pairwise nonisomorphic. We extend this result to a more general context where the inner product invariant under the group action may not necessarily exist.
We introduce a new class of permutations, called web permutations. Using these permutations, we provide a combinatorial interpretation for entries of the transition matrix between the Specht and $\operatorname {SL}_2$-web bases of the irreducible $ \mathfrak {S}_{2n} $-representation indexed by $ (n,n) $, which answers Rhoades’s question. Furthermore, we study enumerative properties of these permutations.
The superspace ring $\Omega _n$ is a rank n polynomial ring tensored with a rank n exterior algebra. Using an extension of the Vandermonde determinant to $\Omega _n$, the authors previously defined a family of doubly graded quotients ${\mathbb {W}}_{n,k}$ of $\Omega _n$, which carry an action of the symmetric group ${\mathfrak {S}}_n$ and satisfy a bigraded version of Poincaré Duality. In this paper, we examine the duality modules ${\mathbb {W}}_{n,k}$ in greater detail. We describe a monomial basis of ${\mathbb {W}}_{n,k}$ and give combinatorial formulas for its bigraded Hilbert and Frobenius series. These formulas involve new combinatorial objects called ordered set superpartitions. These are ordered set partitions $(B_1 \mid \cdots \mid B_k)$ of $\{1,\dots ,n\}$ in which the nonminimal elements of any block $B_i$ may be barred or unbarred.
We prove new mixing rate estimates for the random walks on homogeneous spaces determined by a probability distribution on a finite group
$G$
. We introduce the switched random walk determined by a finite set of probability distributions on
$G$
, prove that its long-term behaviour is determined by the Fourier joint spectral radius of the distributions, and give Hermitian sum-of-squares algorithms for the effective estimation of this quantity.
Let n be a nonnegative integer. For each composition
$\alpha $
of n, Berg, Bergeron, Saliola, Serrano and Zabrocki introduced a cyclic indecomposable
$H_n(0)$
-module
$\mathcal {V}_{\alpha }$
with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study
$\mathcal {V}_{\alpha }$
s from the homological viewpoint. To be precise, we construct a minimal projective presentation of
$\mathcal {V}_{\alpha }$
and a minimal injective presentation of
$\mathcal {V}_{\alpha }$
as well. Using them, we compute
$\mathrm {Ext}^1_{H_n(0)}(\mathcal {V}_{\alpha }, \mathbf {F}_{\beta })$
and
$\mathrm {Ext}^1_{H_n(0)}( \mathbf {F}_{\beta }, \mathcal {V}_{\alpha })$
, where
$\mathbf {F}_{\beta }$
is the simple
$H_n(0)$
-module attached to a composition
$\beta $
of n. We also compute
$\mathrm {Ext}_{H_n(0)}^i(\mathcal {V}_{\alpha },\mathcal {V}_{\beta })$
when
$i=0,1$
and
$\beta \le _l \alpha $
, where
$\le _l$
represents the lexicographic order on compositions.
Motivated by a new conjecture on the behavior of bricks, we start a systematic study of minimal
$\tau $
-tilting infinite (min-
$\tau $
-infinite, for short) algebras. In particular, we treat min-
$\tau $
-infinite algebras as a modern counterpart of minimal representation-infinite algebras and show some of the fundamental similarities and differences between these families. We then relate our studies to the classical tilting theory and observe that this modern approach can provide fresh impetus to the study of some old problems. We further show that in order to verify the conjecture, it is sufficient to treat those min-
$\tau $
-infinite algebras where almost all bricks are faithful. Finally, we also prove that minimal extending bricks have open orbits, and consequently obtain a simple proof of the brick analogue of the first Brauer–Thrall conjecture, recently shown by Schroll and Treffinger using some different techniques.
In this note, we correct an oversight regarding the modules from Definition 4.2 and proof of Lemma 5.12 in Baur et al. (Nayoga Math. J., 2020, 240, 322–354). In particular, we give a correct construction of an indecomposable rank
$2$
module
$\operatorname {\mathbb {L}}\nolimits (I,J)$
, with the rank 1 layers I and J tightly
$3$
-interlacing, and we give a correct proof of Lemma 5.12.