We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any positive integer n, let $\sigma (n)$ be the sum of all positive divisors of n. We prove that for every integer k with $1\leq k\leq 29$ and $(k,30)=1,$
for all $K\in \mathbb {N},$ which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on arithmetic progressions’, Period. Math. Hungar. 88 (2024), 443–460].
In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are ‘close’ (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number field K. For example, we show that under some conditions on rational functions $f_1, \ldots, f_n\in K(X)$, there are only finitely many elements $\alpha \in K$ such that $f_1(\alpha),\ldots,f_n(\alpha)$ are multiplicatively dependent modulo such sets.
This paper is concerned with the relationship of $y$-smooth integers and de Bruijn's approximation $\Lambda (x,\,y)$. Under the Riemann hypothesis, Saias proved that the count of $y$-smooth integers up to $x$, $\Psi (x,\,y)$, is asymptotic to $\Lambda (x,\,y)$ when $y \ge (\log x)^{2+\varepsilon }$. We extend the range to $y \ge (\log x)^{3/2+\varepsilon }$ by introducing a correction factor that takes into account the contributions of zeta zeros and prime powers. We use this correction term to uncover a lower order term in the asymptotics of $\Psi (x,\,y)/\Lambda (x,\,y)$. The term relates to the error term in the prime number theorem, and implies that large positive (resp. negative) values of $\sum _{n \le y} \Lambda (n)-y$ lead to large positive (resp. negative) values of $\Psi (x,\,y)-\Lambda (x,\,y)$, and vice versa. Under the Linear Independence hypothesis, we show a Chebyshev's bias in $\Psi (x,\,y)-\Lambda (x,\,y)$.
We prove that there exist infinitely many coprime numbers a, b, c with $a+b=c$ and $c>\operatorname {\mathrm {rad}}(abc)\exp (6.563\sqrt {\log c}/\log \log c)$. These are the most extremal examples currently known in the $abc$ conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. Our work builds on that of van Frankenhuysen (J. Number Theory 82(2000), 91–95) who proved the existence of examples satisfying the above bound with the constant $6.068$ in place of $6.563$. We show that the constant $6.563$ may be replaced by $4\sqrt {2\delta /e}$ where $\delta $ is a constant such that all unimodular lattices of sufficiently large dimension n contain a nonzero vector with $\ell _1$-norm at most $n/\delta $.
Erdős, Graham and Selfridge considered, for each positive integer n, the least value of $t_n$ so that the integers $n+1, n+2, \dots, n+t_n $ contain a subset the product of whose members with n is a square. An open problem posed by Granville concerns the size of $t_n$, under the assumption of the ABC conjecture. We establish some results on the distribution of $t_n$, and in the process solve Granville’s problem unconditionally.
We use bounds of character sums and some combinatorial arguments to show the abundance of very smooth numbers which also have very few nonzero binary digits.
Let
$\mathcal {A}$
be the set of all integers of the form
$\gcd (n, F_n)$
, where n is a positive integer and
$F_n$
denotes the nth Fibonacci number. Leonetti and Sanna proved that
$\mathcal {A}$
has natural density equal to zero, and asked for a more precise upper bound. We prove that
for all sufficiently large x. In fact, we prove that a similar bound also holds when the sequence of Fibonacci numbers is replaced by a general nondegenerate Lucas sequence.
We investigate uniform upper bounds for the number of powerful numbers in short intervals $(x, x + y]$. We obtain unconditional upper bounds $O({y}/{\log y})$ and $O(\kern1.3pt y^{11/12})$ for all powerful numbers and $y^{1/2}$-smooth powerful numbers, respectively. Conditional on the $abc$-conjecture, we prove the bound $O({y}/{\log ^{1+\epsilon } y})$ for squarefull numbers and the bound $O(\kern1.3pt y^{(2 + \epsilon )/k})$ for k-full numbers when $k \ge 3$. These bounds are related to Roth’s theorem on arithmetic progressions and the conjecture on the nonexistence of three consecutive squarefull numbers.
Let
$\varepsilon> 0$
be sufficiently small and let
$0 < \eta < 1/522$
. We show that if X is large enough in terms of
$\varepsilon $
, then for any squarefree integer
$q \leq X^{196/261-\varepsilon }$
that is
$X^{\eta }$
-smooth one can obtain an asymptotic formula with power-saving error term for the number of squarefree integers in an arithmetic progression
$a \pmod {q}$
, with
$(a,q) = 1$
. In the case of squarefree, smooth moduli this improves upon previous work of Nunes, in which
$196/261 = 0.75096\ldots $
was replaced by
$25/36 = 0.69\overline {4}$
. This also establishes a level of distribution for a positive density set of moduli that improves upon a result of Hooley. We show more generally that one can break the
$X^{3/4}$
-barrier for a density 1 set of
$X^{\eta }$
-smooth moduli q (without the squarefree condition).
Our proof appeals to the q-analogue of the van der Corput method of exponential sums, due to Heath-Brown, to reduce the task to estimating correlations of certain Kloosterman-type complete exponential sums modulo prime powers. In the prime case we obtain a power-saving bound via a cohomological treatment of these complete sums, while in the higher prime power case we establish savings of this kind using p-adic methods.
Given disjoint subsets T1, …, Tm of “not too large” primes up to x, we establish that for a random integer n drawn from [1, x], the m-dimensional vector enumerating the number of prime factors of n from T1, …, Tm converges to a vector of m independent Poisson random variables. We give a specific rate of convergence using the Kubilius model of prime factors. We also show a universal upper bound of Poisson type when T1, …, Tm are unrestricted, and apply this to the distribution of the number of prime factors from a set T conditional on n having k total prime factors.
A set of integers is primitive if it does not contain an element dividing another. Let f(n) denote the number of maximum-size primitive subsets of {1,…,2n}. We prove that the limit α = limn→∞f(n)1/n exists. Furthermore, we present an algorithm approximating α with (1 + ε) multiplicative error in N(ε) steps, showing in particular that α ≈ 1.318. Our algorithm can be adapted to estimate the number of all primitive sets in {1,…,n} as well.
We address another related problem of Cameron and Erdős. They showed that the number of sets containing pairwise coprime integers in {1,…n} is between ${2^{\pi (n)}} \cdot {e^{(1/2 + o(1))\sqrt n }}$ and ${2^{\pi (n)}} \cdot {e^{(2 + o(1))\sqrt n }}$. We show that neither of these bounds is tight: there are in fact ${2^{\pi (n)}} \cdot {e^{(1 + o(1))\sqrt n }}$ such sets.
We determine, up to multiplicative constants, the number of integers $n\leq x$ that have a divisor in $(y,2y]$ and no prime factor $\leq w$. Our estimate is uniform in $x,y,w$. We apply this to determine the order of the number of distinct integers in the $N\times N$ multiplication table, which are free of prime factors $\leq w$, and the number of distinct fractions of the form $(a_{1}a_{2})/(b_{1}b_{2})$ with $1\leq a_{1}\leq b_{1}\leq N$ and $1\leq a_{2}\leq b_{2}\leq N$.
We investigate the density of square-free values of polynomials with large coefficients over the rational function field 𝔽q[t]. Some interesting questions answered as special cases of our results include the density of square-free polynomials in short intervals, and an asymptotic for the number of representations of a large polynomial N as a sum of a k-th power of a small polynomial and a square-free polynomial.
We study the average error term in the usual approximation to the number of y-friable integers congruent to a modulo q, where a ≠ 0 is a fixed integer. We show that in the range exp{(log log x)5/3+ɛ} ⩽ y ⩽ x and on average over q ⩽ x/M with M → ∞ of moderate size, this average error term is asymptotic to −|a| Ψ(x/|a|, y)/2x. Previous results of this sort were obtained by the second author for reasonably dense sequences, however the sequence of y-friable integers studied in the current paper is thin, and required the use of different techniques, which are specific to friable integers.
Given $f\in \mathbb{Z}[t]$ of positive degree, we investigate the existence of auxiliary polynomials $g\in \mathbb{Z}[t]$ for which $f(g(t))$ factors as a product of polynomials of small relative degree. One consequence of this work shows that for any quadratic polynomial $f\in \mathbb{Z}[t]$ and any $\unicode[STIX]{x1D700}>0$, there are infinitely many $n\in \mathbb{N}$ for which the largest prime factor of $f(n)$ is no larger than $n^{\unicode[STIX]{x1D700}}$.
A theorem of Gekeler compares the number of non-isomorphic automorphic representations associated with the space of cusp forms of weight $k$ on $\unicode[STIX]{x0393}_{0}(N)$ to a simpler function of $k$ and $N$, showing that the two are equal whenever $N$ is squarefree. We prove the converse of this theorem (with one small exception), thus providing a characterization of squarefree integers. We also establish a similar characterization of prime numbers in terms of the number of Hecke newforms of weight $k$ on $\unicode[STIX]{x0393}_{0}(N)$.
It follows that a hypothetical fast algorithm for computing the number of such automorphic representations for even a single weight $k$ would yield a fast test for whether $N$ is squarefree. We also show how to obtain bounds on the possible square divisors of a number $N$ that has been found not to be squarefree via this test, and we show how to probabilistically obtain the complete factorization of the squarefull part of $N$ from the number of such automorphic representations for two different weights. If in addition we have the number of such Hecke newforms for even a single weight $k$, then we show how to probabilistically factor $N$ entirely. All of these computations could be performed quickly in practice, given the number(s) of automorphic representations and modular forms as input.
Let $F$ be an integral linear recurrence, $G$ an integer-valued polynomial splitting over the rationals and $h$ a positive integer. Also, let ${\mathcal{A}}_{F,G,h}$ be the set of all natural numbers $n$ such that $\gcd (F(n),G(n))=h$. We prove that ${\mathcal{A}}_{F,G,h}$ has a natural density. Moreover, assuming that $F$ is nondegenerate and $G$ has no fixed divisors, we show that the density of ${\mathcal{A}}_{F,G,1}$ is 0 if and only if ${\mathcal{A}}_{F,G,1}$ is finite.
We prove that the exponent of distribution of $\unicode[STIX]{x1D70F}_{3}$ in arithmetic progressions can be as large as $\frac{1}{2}+\frac{1}{34}$, provided that the moduli is squarefree and has only sufficiently small prime factors. The tools involve arithmetic exponent pairs for algebraic trace functions, as well as a double $q$-analogue of the van der Corput method for smooth bilinear forms.