We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups:
${\mathfrak{A}}_5$
,
${\text{PSL}}_2(\textbf{F}_7)$
,
${\mathfrak{A}}_6$
,
${\text{SL}}_2(\textbf{F}_8)$
,
${\mathfrak{A}}_7$
,
${\text{PSp}}_4(\textbf{F}_3)$
,
${\text{SL}}_2(\textbf{F}_{7})$
,
$2.{\mathfrak{A}}_5$
,
$2.{\mathfrak{A}}_6$
,
$3.{\mathfrak{A}}_6$
or
$6.{\mathfrak{A}}_6$
. All of these groups with a possible exception of
$2.{\mathfrak{A}}_6$
and
$6.{\mathfrak{A}}_6$
indeed act on some rationally connected threefolds.
Given a finite group G, we denote by
$L(G)$
the subgroup lattice of G and by
${\cal CD}(G)$
the Chermak–Delgado lattice of G. In this note, we determine the finite groups G such that
$|{\cal CD}(G)|=|L(G)|-k$
, for
$k=1,2$
.
In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.
Denote by m(G) the largest size of a minimal generating set of a finite group G. We estimate m(G) in terms of $\sum _{p\in \pi (G)}d_p(G),$ where we are denoting by dp(G) the minimal number of generators of a Sylow p-subgroup of G and by π(G) the set of prime numbers dividing the order of G.
The equational complexity function $\beta \nu \,:\,{\open N} \to {\open N}$ of an equational class of algebras bounds the size of equation required to determine the membership of n-element algebras in . Known examples of finitely generated varieties with unbounded equational complexity have growth in Ω(nc), usually for c ≥ (1/2). We show that much slower growth is possible, exhibiting $O(\log_{2}^{3}(n))$ growth among varieties of semilattice-ordered inverse semigroups and additive idempotent semirings. We also examine a quasivariety analogue of equational complexity, and show that a finite group has polylogarithmic quasi-equational complexity function, bounded if and only if all Sylow subgroups are abelian.
We investigate properties which ensure that a given finite graph is the commuting graph of a group or semigroup. We show that all graphs on at least two vertices such that no vertex is adjacent to all other vertices is the commuting graph of some semigroup. Moreover, we obtain complete classifications of the graphs with an isolated vertex or edge that are the commuting graph of a group and the cycles that are the commuting graph of a centrefree semigroup.
We define sparse saturated fusion systems and show that, for odd primes, sparse systems are constrained. This simplifies the proof of the Glauberman–Thompson p-Nilpotency Theorem for fusion systems and a related theorem of Stellmacher. We then define a more restrictive class of saturated fusion systems, called extremely sparse systems, that are constrained for all primes.
We consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.
Let G be a finite group, let p be a prime divisor of the order of G and let k(G) be the number of conjugacy classes of G. By disregarding at most finitely many non-solvable p-solvable groups G, we have with equality if and only if if is an integer, and CG(Cp) = Cp. This extends earlier work of Héthelyi, Külshammer, Malle and Keller.
A cover of a group is a finite collection of proper subgroups whose union is the whole group. A cover is minimal if no cover of the group has fewer members. It is conjectured that a group with a minimal cover of nilpotent subgroups is soluble. It is shown that a minimal counterexample to this conjecture is almost simple and that none of a range of almost simple groups are counterexamples to the conjecture.
One of the important invariants of a р-block B of a group algebra is ℓ (B), the number of non-isomorphic simple B-modules. A number of authors calculated ℓ (B) for various types of defect groups of B. In particular, by Olsson [6], it has been proved that if p = 2 and the defect groups of the block B are dihedral or semi-dihedral or generalized quaternion, then ℓ (B) is at most 3. In this paper, we restrict our attention to the principal p-block B0 of a finite р-solvable group with ℓ (B0) ≤ 3. Let Γ be a finite р-solvable group and k a splitting field for Γ with characteristic р.
It is shown that for a finite group G to be isomorphic to a subgroup of SO(3) (or, equivalently, of PSL(2, C)) it is necessary and sufficient that G satisfies the property that the normalizer of every cyclic subgroup is either cyclic or dihedral.
We consider a finite group G with a group A acting on it in such a way as to induce a partition of G# (a situation which arises in the study of centralizer near-rings). With the additional hypothesis that (|Aω|, |G|) = 1, it is shown that either A is semiregular on G# or G is an irreducible module for A.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.