We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct finitely generated torsion-free solvable groups G that have infinite rank, but such that all finitely generated torsion-free metabelian subquotients of G are virtually abelian. In particular all finitely generated metabelian subgroups of G are virtually abelian. The existence of such groups shows that there is no “torsion-free version” of P. Kropholler’s theorem, which characterises solvable groups of infinite rank via their metabelian subquotients.
Let $\Sigma $ be a closed surface other than the sphere, the torus, the projective plane or the Klein bottle. We construct a continuum of probability measure preserving ergodic minimal profinite actions for the fundamental group of $\Sigma $ that are topologically free but not essentially free, a property that we call allostery. Moreover, the invariant random subgroups we obtain are pairwise distincts.
If G is a group with subgroup H and m, k are two fixed nonnegative integers, H is called an
$(m,k)$
-subnormal subgroup of G if it has index at most m in a subnormal subgroup of G of defect less than or equal to k. We study the behaviour of uncountable groups of cardinality
$\aleph $
where all subgroups of cardinality
$\aleph $
are
$(m,k)$
-subnormal.
A group is called quasihamiltonian if all its subgroups are permutable, and we say that a subgroup Q of a group G is permutably embedded in G if
$\langle Q,g\rangle $
is quasihamiltonian for each element g of G. It is proved here that if a group G contains a permutably embedded normal subgroup Q such that
$G/Q$
is Černikov, then G has a quasihamiltonian subgroup of finite index; moreover, if G is periodic, then it contains a Černikov normal subgroup N such that
$G/N$
is quasihamiltonian. This result should be compared with theorems of Černikov and Schlette stating that if a group G is Černikov over its centre, then G is abelian-by-finite and its commutator subgroup is Černikov.
A subgroup H of a group G is said to be contranormal in G if the normal closure of H in G is equal to G. In this paper, we consider groups whose nonmodular subgroups (of infinite rank) are contranormal.
A subgroup H of a group G is pronormal in G if each of its conjugates
$H^g$
in G is conjugate to it in the subgroup
$\langle H,H^g\rangle $
; a group is prohamiltonian if all of its nonabelian subgroups are pronormal. The aim of the paper is to show that a locally soluble group of (regular) cardinality in which all proper uncountable subgroups are prohamiltonian is prohamiltonian. In order to obtain this result, it is proved that the class of prohamiltonian groups is detectable from the behaviour of countable subgroups. Examples are exhibited to show that there are uncountable prohamiltonian groups that do not behave very well. Finally, it is shown that prohamiltonicity can sometimes be detected through the analysis of the finite homomorphic images of a group.
The pronorm of a group G is the set
$P(G)$
of all elements
$g\in G$
such that X and
$X^g$
are conjugate in
${\langle {X,X^g}\rangle }$
for every subgroup X of G. In general the pronorm is not a subgroup, but we give evidence of some classes of groups in which this property holds. We also investigate the structure of a generalised soluble group G whose pronorm contains a subgroup of finite index.
If ${\mathfrak {F}}$ is a type-definable family of commensurable subsets, subgroups or subvector spaces in a metric structure, then there is an invariant subset, subgroup or subvector space commensurable with ${\mathfrak {F}}$. This in particular applies to type-definable or hyper-definable objects in a classical first-order structure.
This note contains a (short) proof of the following generalisation of the Friedman–Mineyev theorem (earlier known as the Hanna Neumann conjecture): if $A$ and $B$ are nontrivial free subgroups of a virtually free group containing a free subgroup of index $n$, then $\text{rank}(A\cap B)-1\leq n\cdot (\text{rank}(A)-1)\cdot (\text{rank}(B)-1)$. In addition, we obtain a virtually-free-product analogue of this result.
Let $\mathfrak{F}$ be a class of finite groups and $G$ a finite group. Let ${\mathcal{L}}_{\mathfrak{F}}(G)$ be the set of all subgroups $A$ of $G$ with $A^{G}/A_{G}\in \mathfrak{F}$. A chief factor $H/K$ of $G$ is $\mathfrak{F}$-central in $G$ if $(H/K)\rtimes (G/C_{G}(H/K))\in \mathfrak{F}$. We study the structure of $G$ under the hypothesis that every chief factor of $G$ between $A_{G}$ and $A^{G}$ is $\mathfrak{F}$-central in $G$ for every subgroup $A\in {\mathcal{L}}_{\mathfrak{F}}(G)$. As an application, we prove that a finite soluble group $G$ is a PST-group if and only if $A^{G}/A_{G}\leq Z_{\infty }(G/A_{G})$ for every subgroup $A\in {\mathcal{L}}_{\mathfrak{N}}(G)$, where $\mathfrak{N}$ is the class of all nilpotent groups.
It is proved that there is a formula $\pi \left( {h,x} \right)$ in the first-order language of group theory such that each component and each non-abelian minimal normal subgroup of a finite group G is definable by $\pi \left( {h,x} \right)$ for a suitable element h of G; in other words, each such subgroup has the form $\left\{ {x|x\pi \left( {h,x} \right)} \right\}$ for some h. A number of consequences for infinite models of the theory of finite groups are described.
Let p be an odd prime and let G be a non-abelian finite p-group of exponent p2 with three distinct characteristic subgroups, namely 1, Gp and G. The quotient group G/Gp gives rise to an anti-commutative 𝔽p-algebra L such that the action of Aut (L) is irreducible on L; we call such an algebra IAC. This paper establishes a duality G ↔ L between such groups and such IAC algebras. We prove that IAC algebras are semisimple and we classify the simple IAC algebras of dimension at most 4 over certain fields. We also give other examples of simple IAC algebras, including a family related to the m-th symmetric power of the natural module of SL(2, 𝔽).
We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$, we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$-action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?
Let $G$ be a finite group and $H$, $K$ two subgroups of $G$. A group $G$ is said to be a mutually $m$-permutable product of $H$ and $K$ if $G\,=\,HK$ and every maximal subgroup of $H$ permutes with $K$ and every maximal subgroup of $K$ permutes with $H$. In this paper, we investigate the structure of a finite group that is a mutually $m$-permutable product of two subgroups under the assumption that its maximal subgroups are totally smooth.
A group is called a T-group if all its subnormal subgroups are normal. It is proved here that if G is a periodic (generalized) soluble group in which all subnormal subgroups of infinite rank are normal, then either G is a T-group or it has finite rank. It follows that if G is an arbitrary group whose Fitting subgroup has infinite rank, then G has the property T if and only if all its subnormal subgroups of infinite rank are normal.
It is shown that if G is a hypercentral group with all subgroups subnormal, and if the torsion subgroup of G is a π-group for some finite set π of primes, then G is nilpotent. In the case where G is not hypercentral there is a section of G that is much like one of the well-known Heineken-Mohamed groups. It is also shown that if G is a residually nilpotent group with all subgroups subnormal whose torsion subgroup satisfies the above condition then G is nilpotent.
For a fixed integer e and prime p we construct the p-adic order bounded group valuations for a given abelian group G. These valuations give Hopf orders inside the group ring KG where K is an extension of with ramification index e. The orders are given explicitly when G is a p-group of order p or p2. An example is given when G is not abelian.
Hypercentrally embedded subgroups of finite groups can be characterized in terms of permutability as those subgroups which permute with all pronormal subgroups of the group. Despite that, in general, hypercentrally embedded subgroups do not permute with the intersection of pronormal subgroups, in this paper we prove that they permute with certain relevant types of subgroups which can be described as intersections of pronormal subgroups. We prove that hypercentrally embedded subgroups permute with subgroups of prefrattini type, which are intersections of maximal subgroups, and with F-normalizers, for a saturated formation F. In the soluble universe, F-normalizers can be described as intersection of some pronormal subgroups of the group.