Let $\sigma $, $\theta $ be commuting involutions of the connected semisimple algebraic group $G$ where $\sigma$, $\theta $ and $G$ are defined over an algebraically closed field
$\underset{\scriptscriptstyle-}{k},$ char
$\underline{k}$=0. Let $H:={{G}^{\sigma }}$ and $K:={{G}^{\theta }}$
be the fixed point groups. We have an action $\left( H\,\times \,K \right)\,\times \,G\,\to \,G$, where
$\left( \left( h,\,k \right),\,g \right)\,\mapsto \,hg{{k}^{-1}},\,h\,\in \,H$
, $k\,\in \,K,g\,\in \,G$. Let $G\,//\,\left( H\,\times \,K \right)$ denote the categorical quotient Spec
$\mathcal{O}{{(G)}^{H\times K}}$
. We determine when this quotient is smooth. Our results are a generalization of those of Steinberg [Ste75], Pittie [Pit72] and Richardson [Ric82] in the symmetric case where $\sigma \,=\,\theta $ and $H\,=K$.