We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider compact Kählerian manifolds $X$ of even dimension 4 or more, endowed with a log-symplectic holomorphic Poisson structure $\unicode[STIX]{x1D6F1}$ which is sufficiently general, in a precise linear sense, with respect to its (normal-crossing) degeneracy divisor $D(\unicode[STIX]{x1D6F1})$. We prove that $(X,\unicode[STIX]{x1D6F1})$ has unobstructed deformations, that the tangent space to its deformation space can be identified in terms of the mixed Hodge structure on $H^{2}$ of the open symplectic manifold $X\setminus D(\unicode[STIX]{x1D6F1})$, and in fact coincides with this $H^{2}$ provided the Hodge number $h_{X}^{2,0}=0$, and finally that the degeneracy locus $D(\unicode[STIX]{x1D6F1})$ deforms locally trivially under deformations of $(X,\unicode[STIX]{x1D6F1})$.
In this article, we give a new construction of a Kähler-Einstein metric on a smooth projective variety with ample canonical bundle. As a consequence, for a dominant projective morphism f: X → S with connected fibers such that a general fiber has an ample canonical bundle, and for a positive integer m, we construct a canonical singular Hermitian metric hE,m on with semipositive curvature in the sense of Nakano.
We prove that a class of perturbations of standard $\text{CR}$ structure on the boundary of threedimensional complex ellipsoid ${{E}_{p,\,q}}$ can be realized as hypersurfaces on ${{\mathbb{C}}^{2}}$, which generalizes the result of Burns and Epstein on the embeddability of some perturbations of standard $\text{CR}$ structure on ${{S}^{3}}$.
Let (M, °T″) be a compact strongly pseudo-convex CR-manifold with trivial canonical line bundle. Then, in [A-M2], a weak version of the Bogomolov type theorem for deformations of CR-structures was shown by an analogy of the Tian- Todorov method. In this paper, we show that: in the very strict sense, there is a counterexample.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.