We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this paper is to present some results about the space $L^{\varPhi }(\nu ),$ where $\nu$ is a vector measure on a compact (not necessarily abelian) group and $\varPhi$ is a Young function. We show that under natural conditions, the space $L^{\varPhi }(\nu )$ becomes an $L^{1}(G)$-module with respect to the usual convolution of functions. We also define one more convolution structure on $L^{\varPhi }(\nu ).$
Let $G$ be a compact group. The aim of this note is to show that the only continuous *-homomorphism from $L^{1}(G)$ to $\ell ^{\infty }\text{-}\bigoplus _{[{\it\pi}]\in {\hat{G}}}{\mathcal{B}}_{2}({\mathcal{H}}_{{\it\pi}})$ that transforms a convolution product into a pointwise product is, essentially, a Fourier transform. A similar result is also deduced for maps from $L^{2}(G)$ to $\ell ^{2}\text{-}\bigoplus _{[{\it\pi}]\in {\hat{G}}}{\mathcal{B}}_{2}({\mathcal{H}}_{{\it\pi}})$.
On a compact connected group $G$, consider the infinitesimal generator $-L$ of a central symmetric Gaussian convolution semigroup ${{\left( {{\mu }_{t}} \right)}_{t>0}}$. Using appropriate notions of distribution and smooth function spaces, we prove that $L$ is hypoelliptic if and only if ${{\left( {{\mu }_{t}} \right)}_{t>0}}$ is absolutely continuous with respect to Haar measure and admits a continuous density $x\mapsto {{\mu }_{t}}\left( x \right),t>0$, such that ${{\lim }_{t\to 0}}t\log {{\mu }_{t}}\left( e \right)=0$. In particular, this condition holds if and only if any Borel measure $u$ which is solution of $Lu=0$ in an open set $\Omega $ can be represented by a continuous function in $\Omega $. Examples are discussed.
We describe the structure of the space of second order elliptic differential operators on a homogenous bundle over a compact Lie group. Subject to a technical condition, these operators are homotopic to the Laplacian. The technical condition is further investigated, with examples given where it holds and others where it does not. Since many spectral invariants are also homotopy invariants, these results provide information about the invariants of these operators.
The main purpose of this paper is to study the validity of the Hausdorff–Young inequality for vector-valued functions defined on a non-commutative compact group. As we explain in the introduction, the natural context for this research is that of operator spaces. This leads us to formulate a whole new theory of Fourier type and cotype for the category of operator spaces. The present paper is the first step in this program, where the basic theory is presented, the main examples are analyzed and some important questions are posed.
We continue our investigation in [RST] of a martingale formed by picking a measurable set $A$ in a compact group $G$, taking random rotates of $A$, and considering measures of the resulting intersections, suitably normalized. Here we concentrate on the inverse problem of recognizing $A$ from a small amount of data from this martingale. This leads to problems in harmonic analysis on $G$, including an analysis of integrals of products of Gegenbauer polynomials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.