We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $. We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$-representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$, where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $.
This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$, then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
We prove Wiener Tauberian theorem type results for various spaces of radial functions, which are Banach algebras on a real-rank-one semisimple Lie group G. These are natural generalizations of the Wiener Tauberian theorem for the commutative Banach algebra of the integrable radial functions on G.
Let $\mathcal {M}$ be an Ahlfors $n$-regular Riemannian manifold such that either the Ricci curvature is non-negative or the Ricci curvature is bounded from below together with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2, 1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function $u : \mathcal {M} \to \mathbb {R}$ by a Carleson measure condition of its $\sigma$-harmonic extension $U:\mathcal {M}\times \mathbb {R}_+ \to \mathbb {R}$. This paper is concerned with the similar problem under a more general Dirichlet metric measure space setting, and the limiting behaviours of BMO & Carleson measure, where the heat kernel admits only the so-called diagonal upper estimate. More significantly, without the Ricci curvature condition, we relax the Ahlfors regularity to a doubling property, and remove the pointwise bound on the gradient of the heat kernel. Some similar results for the Lipschitz function are also given, and two open problems related to our main result are considered.
Let X be a real prehomogeneous vector space under a reductive group G, such that X is an absolutely spherical G-variety with affine open orbit. We define local zeta integrals that involve the integration of Schwartz–Bruhat functions on X against generalized matrix coefficients of admissible representations of
$G(\mathbb {R})$
, twisted by complex powers of relative invariants. We establish the convergence of these integrals in some range, the meromorphic continuation, as well as a functional equation in terms of abstract
$\gamma $
-factors. This subsumes the archimedean zeta integrals of Godement–Jacquet, those of Sato–Shintani (in the spherical case), and the previous works of Bopp–Rubenthaler. The proof of functional equations is based on Knop’s results on Capelli operators.
Let G be a complex semisimple Lie group and H a complex closed connected subgroup. Let and be their Lie algebras. We prove that the regular representation of G in $L^2(G/H)$ is tempered if and only if the orthogonal of in contains regular elements by showing simultaneously the equivalence to other striking conditions, such as has a solvable limit algebra.
We prove
$L^{p}$
-boundedness of oscillating multipliers on symmetric spaces of noncompact type of arbitrary rank, as well as on a wide class of locally symmetric spaces.
Let
$G/K$
be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is a compact, connected subgroup. We use decay properties of the spherical functions to show that the convolution product of any
$r=r(G/K)$
continuous orbital measures has its density function in
$L^{2}(G)$
and hence is an absolutely continuous measure with respect to the Haar measure. The number r is approximately the rank of
$G/K$
. For the special case of the orbital measures,
$\nu _{a_{i}}$
, supported on the double cosets
$Ka_{i}K$
, where
$a_{i}$
belongs to the dense set of regular elements, we prove the sharp result that
$\nu _{a_{1}}\ast \nu _{a_{2}}\in L^{2},$
except for the symmetric space of Cartan class
$AI$
when the convolution of three orbital measures is needed (even though
$\nu _{a_{1}}\ast \nu _{a_{2}}$
is absolutely continuous).
Let
$ H $
be a compact subgroup of a locally compact group
$ G $
. We first investigate some (operator) (co)homological properties of the Fourier algebra
$A(G/H)$
of the homogeneous space
$G/H$
such as (operator) approximate biprojectivity and pseudo-contractibility. In particular, we show that
$ A(G/H) $
is operator approximately biprojective if and only if
$ G/H $
is discrete. We also show that
$A(G/H)^{**}$
is boundedly approximately amenable if and only if G is compact and H is open. Finally, we consider the question of existence of weakly compact multipliers on
$A(G/H)$
.
In this paper, we consider the problem of characterizing positive definite functions on compact two-point homogeneous spaces cross locally compact abelian groups. For a locally compact abelian group $G$ with dual group $\widehat{G}$, a compact two-point homogeneous space $\mathbb{H}$ with normalized geodesic distance $\unicode[STIX]{x1D6FF}$ and a profile function $\unicode[STIX]{x1D719}:[-1,1]\times G\rightarrow \mathbb{C}$ satisfying certain continuity and integrability assumptions, we show that the positive definiteness of the kernel $((x,u),(y,v))\in (\mathbb{H}\times G)^{2}\mapsto \unicode[STIX]{x1D719}(\cos \unicode[STIX]{x1D6FF}(x,y),uv^{-1})$ is equivalent to the positive definiteness of the Fourier transformed kernels $(x,y)\in \mathbb{H}^{2}\mapsto \widehat{\unicode[STIX]{x1D719}}_{\cos \unicode[STIX]{x1D6FF}(x,y)}(\unicode[STIX]{x1D6FE})$, $\unicode[STIX]{x1D6FE}\in \widehat{G}$, where $\unicode[STIX]{x1D719}_{t}(u)=\unicode[STIX]{x1D719}(t,u)$, $u\in G$. We also provide some results on the strict positive definiteness of the kernel.
A classical result due to Paley and Wiener characterizes the existence of a nonzero function in $L^{2}(\mathbb{R})$, supported on a half-line, in terms of the decay of its Fourier transform. In this paper, we prove an analogue of this result for Damek–Ricci spaces.
We consider abstract Sobolev spaces of Bessel-type associated with an operator. In this work, we pursue the study of algebra properties of such functional spaces through the corresponding semigroup. As a follow-up to our previous work, we show that by making use of the property of a ‘carré du champ’ identity, this algebra property holds in a wider range than previously shown.
This paper introduces a class of abstract linear representations on Banach convolution function algebras over homogeneous spaces of compact groups. Let $G$ be a compact group and $H$ a closed subgroup of $G$. Let $\mu $ be the normalized $G$-invariant measure over the compact homogeneous space $G/H$ associated with Weil's formula and $1\,\le \,p\,<\,\infty $. We then present a structured class of abstract linear representations of the Banach convolution function algebras ${{L}^{p}}\left( G/H,\,\mu \right)$.
This paper introduces a unified operator theory approach to the abstract Plancherel (trace) formulas over homogeneous spaces of compact groups. Let $G$ be a compact group and let $H$ be a closed subgroup of $G$. Let ${G}/{H}\;$ be the left coset space of $H$ in $G$ and let $\mu$ be the normalized $G$-invariant measure on ${G}/{H}\;$ associated with Weil’s formula. Then we present a generalized abstract notion of Plancherel (trace) formula for the Hilbert space ${{L}^{2}}\left( {G}/{H,\,\mu }\; \right)$.
Given a measure ${{\bar{\mu }}_{\infty }}$ on a locally symmetric space $Y=\Gamma \backslash G/K$ obtained as a weak-$*$ limit of probability measures associated with eigenfunctions of the ring of invariant differential operators, we construct a measure ${{\bar{\mu }}_{\infty }}$ on the homogeneous space $X=\Gamma \backslash G$ that lifts ${{\bar{\mu }}_{\infty }}$ and is invariant by a connected subgroup ${{A}_{1}}\subset A$ of positive dimension, where $G=NAK$ is an Iwasawa decomposition. If the functions are, in addition, eigenfunctions of the Hecke operators, then ${{\bar{\mu }}_{\infty }}$ is also the limit of measures associated with Hecke eigenfunctions on $X$. This generalizes results of the author with A. Venkatesh in the case where the spectral parameters stay away from the walls of the Weyl chamber.
Let ${{F}_{2n,2}}$ be the free nilpotent Lie group of step two on $2n$ generators, and let $\mathbf{P}$ denote the affine automorphism group of ${{F}_{2n,2}}$. In this article the theory of continuous wavelet transform on ${{F}_{2n,2}}$ associated with $\mathbf{P}$ is developed, and then a type of radial wavelet is constructed. Secondly, the Radon transform on ${{F}_{2n,2}}$ is studied, and two equivalent characterizations of the range for Radon transform are given. Several kinds of inversion Radon transform formulae are established. One is obtained from the Euclidean Fourier transform; the others are from the group Fourier transform. By using wavelet transforms we deduce an inversion formula of the Radon transform, which does not require the smoothness of functions if the wavelet satisfies the differentiability property. In particular, if $n\,=\,1$, ${{F}_{2,2}}$ is the 3-dimensional Heisenberg group ${{H}^{1}}$, the inversion formula of the Radon transform is valid, which is associated with the sub-Laplacian on ${{F}_{2,2}}$. This result cannot be extended to the case $n\,\ge \,2$.
Let $W$ be a Weyl group, $\sum $ a set of simple reflections in $W$ related to a basis $\Delta $ for the root system $\Phi $ associated with $W$ and $\theta $ an involution such that $\theta (\Delta )\,=\,\Delta $. We show that the set of $\theta $- twisted involutions in $W$, ${{\mathcal{J}}_{\theta }}\,=\,\{w\,\in \,W\,|\,\theta (w)\,=\,{{w}^{-1}}\}$ is in one to one correspondence with the set of regular involutions ${{\mathcal{J}}_{\text{ID}}}$. The elements of ${{\mathcal{J}}_{\theta }}$ are characterized by sequences in $\sum $ which induce an ordering called the Richardson–Springer Poset. In particular, for $\Phi $ irreducible, the ascending Richardson–Springer Poset of ${{\mathcal{J}}_{\theta }}$, for nontrivial $\theta $ is identical to the descending Richardson–Springer Poset of ${{\mathcal{J}}_{\text{ID}}}$.
We prove Beurling's theorem for rank 1 Riemannian symmetric spaces and relate its consequences with the characterization of the heat kernel of the symmetric space.
In this paper we introduce probability-preserving convolution algebras on cones of positive semidefinite matrices over one of the division algebras ${\mathbb F} = {\mathbb R}, {\mathbb C}$ or ${\mathbb H}$ which interpolate the convolution algebras of radial bounded Borel measures on a matrix space $M_{p,q}({\mathbb F})$ with $p\geq q$. Radiality in this context means invariance under the action of the unitary group $U_p({\mathbb F})$ from the left. We obtain a continuous series of commutative hypergroups whose characters are given by Bessel functions of matrix argument. Our results generalize well-known structures in the rank-one case, namely the Bessel–Kingman hypergroups on the positive real line, to a higher rank setting. In a second part of the paper we study structures depending only on the matrix spectra. Under the mapping $r\mapsto \text{spec}(r)$, the convolutions on the underlying matrix cone induce a continuous series of hypergroup convolutions on a Weyl chamber of type $B_q$. The characters are now Dunkl-type Bessel functions. These convolution algebras on the Weyl chamber naturally extend the harmonic analysis for Cartan motion groups associated with the Grassmann manifolds $U(p,q)/(U_p\times U_q)$ over ${\mathbb F}$.
Let $X=G/H$ be a reductive symmetric space and $K$ a maximal compact subgroup of $G$. We study Fourier transforms of compactly supported $K$-finite distributions on $X$ and characterize the image of the space of such distributions.
Differential operators ${{D}_{x,}}\,{{D}_{y}}$, and ${{D}_{z}}$ are formed using the action of the 3-dimensional discrete Heisenberg group $G$ on a set $S$, and the operators will act on functions on $S$. The Laplacian operator $L\,=\,D_{x}^{2}+D_{y}^{2}+D_{z}^{2}$ is a difference operator with variable differences which can be associated to a unitary representation of $G$ on the Hilbert space ${{L}^{2}}\left( S \right)$. Using techniques from harmonic analysis and representation theory, we show that the Laplacian operator is locally solvable.