We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X be a compact metric space, C(X) be the space of continuous real-valued functions on X and $A_{1},A_{2}$ be two closed subalgebras of C(X) containing constant functions. We consider the problem of approximation of a function $f\in C(X)$ by elements from $A_{1}+A_{2}$. We prove a Chebyshev-type alternation theorem for a function $u_{0} \in A_{1}+A_{2}$ to be a best approximation to f.
We extend Katok’s result on ‘the approximation of hyperbolic measures by horseshoes’ to Banach cocycles. More precisely, let f be a $C^r(r>1)$ diffeomorphism of a compact Riemannian manifold M, preserving an ergodic hyperbolic measure $\mu $ with positive entropy, and let $\mathcal {A}$ be a Hölder continuous cocycle of bounded linear operators acting on a Banach space $\mathfrak {X}$. We prove that there is a sequence of horseshoes for f and dominated splittings for $\mathcal {A}$ on the horseshoes, such that not only the measure theoretic entropy of f but also the Lyapunov exponents of $\mathcal {A}$ with respect to $\mu $ can be approximated by the topological entropy of f and the Lyapunov exponents of $\mathcal {A}$ on the horseshoes, respectively. As an application, we show the continuity of sub-additive topological pressure for Banach cocycles.
Any Lipschitz map $f : M \to N$ between two pointed metric spaces may be extended in a unique way to a bounded linear operator $\widehat {f} : \mathcal {F}(M) \to \mathcal {F}(N)$ between their corresponding Lipschitz-free spaces. In this paper, we give a necessary and sufficient condition for $\widehat {f}$ to be compact in terms of metric conditions on $f$. This extends a result by A. Jiménez-Vargas and M. Villegas-Vallecillos in the case of non-separable and unbounded metric spaces. After studying the behaviour of weakly convergent sequences made of finitely supported elements in Lipschitz-free spaces, we also deduce that $\widehat {f}$ is compact if and only if it is weakly compact.
Let λ be a symmetric, normal sequence space equipped with a k-symmetric, monotone norm ‖.‖λ. Also, assume that (λ, ‖.‖λ) is AK-BK. Corresponding to this sequence space λ, we study compactness of the operator ideal Kλ. We proved compactness, completeness and injectivity of the dual operator ideal Kλd. We also investigate the factorization of these operators.
There are two main aims of the paper. The first is to extend the criterion for the precompactness of sets in Banach function spaces to the setting of quasi-Banach function spaces. The second is to extend the criterion for the precompactness of sets in the Lebesgue spaces Lp(ℝn), 1 ⩽ p < ∞, to the so-called power quasi-Banach function spaces. These criteria are applied to establish compact embeddings of abstract Besov spaces into quasi-Banach function spaces. The results are illustrated on embeddings of Besov spaces , into Lorentz-type spaces.
We give an alternative proof of the theorem of Alikakos and Fusco concerning existence of heteroclinic solutions U : ℝ → ℝN to the system
Here a± are local minima of a potential W ∈ C2(ℝN) with W(a±) = 0. This system arises in the theory of phase transitions. Our method is variational but differs from the original artificial constraint method of Alikakos and Fusco and establishes existence by analysing the loss of compactness in minimizing sequences of the action in the appropriate functional space. Our assumptions are slightly different from those considered previously and also imply a priori estimates for the solution.
We give a positive answer to the question of Bouras [‘Almost Dunford–Pettis sets in Banach lattices’, Rend. Circ. Mat. Palermo (2) 62 (2013), 227–236] concerning weak compactness of almost Dunford–Pettis sets in Banach lattices. That is, every almost Dunford–Pettis set in a Banach lattice $E$ is relatively weakly compact if and only if $E$ is a $\mathit{KB}$-space.
Let 1 ≤ p < ∞. A sequence 〈 xn 〉 in a Banach space X is defined to be p-operator summable if for each 〈 fn 〉 ∈ lw*p(X*) we have 〈〈 fn(xk)〉k〉n ∈ lsp(lp). Every norm p-summable sequence in a Banach space is operator p-summable whereas in its turn every operator p-summable sequence is weakly p-summable. An operator T ∈ B(X, Y) is said to be p-limited if for every 〈 xn 〉 ∈ lpw(X), 〈 Txn 〉 is operator p-summable. The set of all p-limited operators forms a normed operator ideal. It is shown that every weakly p-summable sequence in X is operator p-summable if and only if every operator T ∈ B(X, lp) is p-absolutely summing. On the other hand, every operator p-summable sequence in X is norm p-summable if and only if every p-limited operator in B(lp', X) is absolutely p-summing. Moreover, this is the case if and only if X is a subspace of Lp(μ) for some Borel measure μ.
In this paper we determine theHausdorff measure of noncompactness on the sequence space $n\left( \phi \right)$ of $\text{W}\text{.}\,\text{L}\text{.}\,\text{C}.$ Sargent. Further we apply the technique of measures of noncompactness to the theory of infinite systems of differential equations in the Banach sequence spaces $n\left( \phi \right)$ and $m\left( \phi \right)$. Our aim is to present some existence results for infinite systems of differential equations formulated with the help of measures of noncompactness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.