Viruses present an amazing genetic variability. An ensemble of infecting viruses, also called a viral quasispecies, is a cloud of mutants centered around a specific genotype. The simplest model of evolution, whose equilibrium state is described by the quasispecies equation, is the Moran–Kingman model. For the sharp-peak landscape, we perform several exact computations and derive several exact formulas. We also obtain an exact formula for the quasispecies distribution, involving a series and the mean fitness. A very simple formula for the mean Hamming distance is derived, which is exact and does not require a specific asymptotic expansion (such as sending the length of the macromolecules to $\infty$ or the mutation probability to 0). With the help of these formulas, we present an original proof for the well-known phenomenon of the error threshold. We recover the limiting quasispecies distribution in the long-chain regime. We try also to extend these formulas to a general fitness landscape. We obtain an equation involving the covariance of the fitness and the Hamming class number in the quasispecies distribution. Going beyond the sharp-peak landscape, we consider fitness landscapes having finitely many peaks and a plateau-type landscape. Finally, within this framework, we prove rigorously the possible occurrence of the survival of the flattest, a phenomenon which was previously discovered by Wilke et al. (Nature 412, 2001) and which has been investigated in several works (see e.g. Codoñer et al. (PLOS Pathogens 2, 2006), Franklin et al. (Artificial Life 25, 2019), Sardanyés et al. (J. Theoret. Biol. 250, 2008), and Tejero et al. (BMC Evolutionary Biol. 11, 2011)).