We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
then $C_{\varphi }$ is in the Schatten $p$-class of the Hardy space $H^2$.
(2) There exists a holomorphic self-map $\varphi$ (which is, of course, not of bounded valence) such that the inequality (0.1) holds and $C_{\varphi }: H^2\to H^2$ does not belong to the Schatten $p$-class.
We characterize the membership in the Schatten ideals $\mathcal {S}_p$, $0<p<\infty $, of composition operators acting on weighted Dirichlet spaces. Our results concern a large class of weights. In particular, we examine the case of perturbed superharmonic weights. Characterization of composition operators acting on weighted Bergman spaces to be in $\mathcal {S}_p$ is also given.
We study the boundedness and compactness of weighted composition operators acting on weighted Bergman spaces and weighted Dirichlet spaces by using the corresponding Carleson measures. We give an estimate for the norm and the essential norm of weighted composition operators between weighted Bergman spaces as well as the composition operators between weighted Hilbert spaces.
Given a holomorphic self-map
$\varphi $
of
$\mathbb {D}$
(the open unit disc in
$\mathbb {C}$
), the composition operator
$C_{\varphi } f = f \circ \varphi $
,
$f \in H^2(\mathbb {\mathbb {D}})$
, defines a bounded linear operator on the Hardy space
$H^2(\mathbb {\mathbb {D}})$
. The model spaces are the backward shift-invariant closed subspaces of
$H^2(\mathbb {\mathbb {D}})$
, which are canonically associated with inner functions. In this paper, we study model spaces that are invariant under composition operators. Emphasis is put on finite-dimensional model spaces, affine transformations, and linear fractional transformations.
Let u and
$\varphi $
be two analytic functions on the unit disk D such that
$\varphi (D) \subset D$
. A weighted composition operator
$uC_{\varphi }$
induced by u and
$\varphi $
is defined on
$A^2_{\alpha }$
, the weighted Bergman space of D, by
$uC_{\varphi }f := u \cdot f \circ \varphi $
for every
$f \in A^2_{\alpha }$
. We obtain sufficient conditions for the compactness of
$uC_{\varphi }$
in terms of function-theoretic properties of u and
$\varphi $
. We also characterize when
$uC_{\varphi }$
on
$A^2_{\alpha }$
is Hilbert–Schmidt. In particular, the characterization is independent of
$\alpha $
when
$\varphi $
is an automorphism of D. Furthermore, we investigate the Hilbert–Schmidt difference of two weighted composition operators on
$A^2_{\alpha }$
.
Li et al. [A spectral radius type formula for approximation numbers of composition operators, J. Funct. Anal. 267(12) (2014), 4753-4774] proved a spectral radius type formula for the approximation numbers of composition operators on analytic Hilbert spaces with radial weights and on $H^{p}$ spaces, $p\geq 1$, involving Green capacity. We prove that their formula holds for a wide class of Banach spaces of analytic functions and weights.
We investigate unbounded, linear operators arising from a finite sum of composition operators on Fock space. Real symmetry and complex symmetry of these operators are characterised.
The notions of chaos and frequent hypercyclicity enjoy an intimate relationship in linear dynamics. Indeed, after a series of partial results, it was shown by Bayart and Ruzsa in 2015 that for backward weighted shifts on $\ell _p(\mathbb {Z})$, the notions of chaos and frequent hypercyclicity coincide. It is with some effort that one shows that these two notions are distinct. Bayart and Grivaux in 2007 constructed a non-chaotic frequently hypercyclic weighted shift on $c_0$. It was only in 2017 that Menet settled negatively whether every chaotic operator is frequently hypercylic. In this article, we show that for a large class of composition operators on $L^{p}$-spaces, the notions of chaos and frequent hypercyclicity coincide. Moreover, in this particular class, an invertible operator is frequently hypercyclic if and only if its inverse is frequently hypercyclic. This is in contrast to a very recent result of Menet where an invertible operator frequently hypercyclic on $\ell _1$ whose inverse is not frequently hypercyclic is constructed.
We characterise bounded and compact generalised weighted composition operators acting from the weighted Bergman space
$A^p_\omega $
, where
$0<p<\infty $
and
$\omega $
belongs to the class
$\mathcal {D}$
of radial weights satisfying a two-sided doubling condition, to a Lebesgue space
$L^q_\nu $
. On the way, we establish a new embedding theorem on weighted Bergman spaces
$A^p_\omega $
which generalises the well-known characterisation of the boundedness of the differentiation operator
$D^n(f)=f^{(n)}$
from the classical weighted Bergman space
$A^p_\alpha $
to the Lebesgue space
$L^q_\mu $
, induced by a positive Borel measure
$\mu $
, to the setting of doubling weights.
We investigate the boundedness, compactness, invertibility and Fredholmness of weighted composition operators between Lorentz spaces. It is also shown that the classes of Fredholm and invertible weighted composition maps between Lorentz spaces coincide when the underlying measure space is nonatomic.
Let
$\Omega $
be homogeneous of degree zero and have mean value zero on the unit sphere
${S}^{d-1}$
,
$T_{\Omega }$
be the convolution singular integral operator with kernel
$\frac {\Omega (x)}{|x|^d}$
. In this paper, we prove that if
$\Omega \in L\log L(S^{d-1})$
, and U is an operator which is bounded on
$L^2(\mathbb {R}^d)$
and satisfies the weak type endpoint estimate of
$L(\log L)^{\beta }$
type, then the composition operator
$UT_{\Omega }$
satisfies a weak type endpoint estimate of
$L(\log L)^{\beta +1}$
type.
We provide complete characterisations for the compactness of weighted composition operators between two distinct $L^{p}$-spaces, where $1\leq p\leq \infty$. As a corollary, when the underlying measure space is nonatomic, the only compact weighted composition map between $L^{p}$-spaces is the zero operator.
We study the asymptotic behaviour of the powers of a composition operator on various Banach spaces of holomorphic functions on the disc, namely, standard weighted Bergman spaces (finite and infinite order), Bloch space, little Bloch space, Bloch-type space and Dirichlet space. Moreover, we give a complete characterization of those composition operators that are similar to an isometry on these various Banach spaces. We conclude by studying the asymptotic behaviour of semigroups of composition operators on these various Banach spaces.
Let $T_{1}$, $T_{2}$ be two Calderón–Zygmund operators and $T_{1,b}$ be the commutator of $T_{1}$ with symbol $b\in \text{BMO}(\mathbb{R}^{n})$. In this paper, by establishing new bilinear sparse dominations and a new weighted estimate for bilinear sparse operators, we prove that the composite operator $T_{1}T_{2}$ satisfies the following estimate: for $\unicode[STIX]{x1D706}>0$ and weight $w\in A_{1}(\mathbb{R}^{n})$,
In this paper, we discuss the properties of the embedding operator $i_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6EC}}:M_{\unicode[STIX]{x1D6EC}}^{\infty }{\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707})$, where $\unicode[STIX]{x1D707}$ is a positive Borel measure on $[0,1]$ and $M_{\unicode[STIX]{x1D6EC}}^{\infty }$ is a Müntz space. In particular, we compute the essential norm of this embedding. As a consequence, we recover some results of the first author. We also study the compactness (resp. weak compactness) and compute the essential norm (resp. generalized essential norm) of the embedding $i_{\unicode[STIX]{x1D707}_{1},\unicode[STIX]{x1D707}_{2}}:L^{\infty }(\unicode[STIX]{x1D707}_{1}){\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707}_{2})$, where $\unicode[STIX]{x1D707}_{1}$, $\unicode[STIX]{x1D707}_{2}$ are two positive Borel measures on [0, 1] with $\unicode[STIX]{x1D707}_{2}$ absolutely continuous with respect to $\unicode[STIX]{x1D707}_{1}$.
The algebra of all Dirichlet series that are uniformly convergent in the half-plane of complex numbers with positive real part is investigated. When it is endowed with its natural locally convex topology, it is a non-nuclear Fréchet Schwartz space with basis. Moreover, it is a locally multiplicative algebra but not a Q-algebra. Composition operators on this space are also studied.
We use a generalised Nevanlinna counting function to compute the Hilbert–Schmidt norm of a composition operator on the Bergman space $L_{a}^{2}(\mathbb{D})$ and weighted Bergman spaces $L_{a}^{1}(\text{d}A_{\unicode[STIX]{x1D6FC}})$ when $\unicode[STIX]{x1D6FC}$ is a nonnegative integer.
We give some new characterizations for compactness of weighted composition operators $u{{C}_{\varphi }}$ acting on Bloch-type spaces in terms of the power of the components of $\varphi$, where $\varphi$ is a holomorphic self-map of the polydisk ${{\mathbb{D}}^{n}}$, thus generalizing the results obtained by Hyvärinen and Lindström in 2012.
We study the image of the model subspace ${{K}_{\theta }}$ under the composition operator ${{C}_{\varphi }}$, where $\varphi $ and $\theta $ are inner functions, and find the smallest model subspace which contains the linear manifold ${{C}_{\varphi }}{{K}_{\theta }}$. Then we characterize the case when ${{C}_{\varphi }}$ maps ${{K}_{\theta }}$ into itself. This case leads to the study of the inner functions $\varphi $ and $\psi $ such that the composition $\psi \,\text{o}\,\varphi $ is a divisor of $\psi $ in the family of inner functions.
We study properties of composition operators induced by symbols acting from the unit disk to the polydisk. This result will be involved in the investigation of weighted composition operators on the Hardy space on the unit disk and, moreover, be concerned with composition operators acting from the Bergman space to the Hardy space on the unit disk.