We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We use a special tiling for the hyperbolic d-space $\mathbb {H}^d$ for $d=2,3,4$ to construct an (almost) explicit isomorphism between the Lipschitz-free space $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(P)\oplus \mathcal {F}(\mathcal {N})$, where P is a polytope in $\mathbb {R}^d$ and $\mathcal {N}$ a net in $\mathbb {H}^d$ coming from the tiling. This implies that the spaces $\mathcal {F}(\mathbb {H}^d)$ and $\mathcal {F}(\mathbb {R}^d)\oplus \mathcal {F}(\mathcal {M})$ are isomorphic for every net $\mathcal {M}$ in $\mathbb {H}^d$. In particular, we obtain that, for $d=2,3,4$, $\mathcal {F}(\mathbb {H}^d)$ has a Schauder basis. Moreover, using a similar method, we also give an explicit isomorphism between $\mathrm {Lip}(\mathbb {H}^d)$ and $\mathrm {Lip}(\mathbb {R}^d)$.
We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.
We study the geometry of Hilbert spaces with complete Pick kernels and the geometry of sets in complex hyperbolic space, taking advantage of the correspondence between the two topics. We focus on questions of assembling Hilbert spaces into larger spaces and of assembling sets into larger sets. Model questions include describing the possible three-dimensional subspaces of four-dimensional Hilbert spaces with Pick kernels and describing the possible triangular faces of a tetrahedron in $\mathbb {CH}^{n}$. A novel technical tool is a complex analog of the cosine of a vertex angle.
A. Mark and J. Paupert [Presentations for cusped arithmetic hyperbolic lattices, 2018, arXiv:1709.06691.] presented a method to compute a presentation for any cusped complex hyperbolic lattice. In this note, we will use their method to give a presentation for the Eisenstein-Picard modular group in three complex dimensions.
We study the arithmeticity of $\mathbb {C}$-Fuchsian subgroups of some nonarithmetic lattices constructed by Deraux et al. [‘New non-arithmetic complex hyperbolic lattices’, Invent. Math.203 (2016), 681–771]. Our results give an answer to a question raised by Wells [Hybrid Subgroups of Complex Hyperbolic Isometries, Doctoral thesis, Arizona State University, 2019].
We prove several sharp distortion and monotonicity theorems for spherically convex functions defined on the unit disk involving geometric quantities such as spherical length, spherical area, and total spherical curvature. These results can be viewed as geometric variants of the classical Schwarz lemma for spherically convex functions.
The hyperbolic random geometric graph was introduced by Krioukov et al. (Phys. Rev. E82, 2010). Among many equivalent models for the hyperbolic space, we study the d-dimensional Poincaré ball (
$d\ge 2$
), with a general connectivity radius. While many phase transitions are known for the expectation asymptotics of certain subgraph counts, very little is known about the second-order results. Two of the distinguishing characteristics of geometric graphs on the hyperbolic space are the presence of tree-like hierarchical structures and the power-law behaviour of the degree distribution. We aim to reveal such characteristics in detail by investigating the behaviour of sub-tree counts. We show multiple phase transitions for expectation and variance in the resulting hyperbolic geometric graph. In particular, the expectation and variance of the sub-tree counts exhibit an intricate dependence on the degree sequence of the tree under consideration. Additionally, unlike the thermodynamic regime of the Euclidean random geometric graph, the expectation and variance may exhibit different growth rates, which is indicative of power-law behaviour. Finally, we also prove a normal approximation for sub-tree counts using the Malliavin–Stein method of Last et al. (Prob. Theory Relat. Fields165, 2016), along with the Palm calculus for Poisson point processes.
Let
$G(n)={\textrm {Sp}}(n,1)$
or
${\textrm {SU}}(n,1)$
. We classify conjugation orbits of generic pairs of loxodromic elements in
$G(n)$
. Such pairs, called ‘nonsingular’, were introduced by Gongopadhyay and Parsad for
${\textrm {SU}}(3,1)$
. We extend this notion and classify
$G(n)$
-conjugation orbits of such elements in arbitrary dimension. For
$n=3$
, they give a subspace that can be parametrized using a set of coordinates whose local dimension equals the dimension of the underlying group. We further construct twist-bend parameters to glue such representations and obtain local parametrization for generic representations of the fundamental group of a closed (genus
$g \geq 2$
) oriented surface into
$G(3)$
.
The space of convex projective structures has been well studied with respect to the topological entropy. But, to better understand the geometry of the structure, we study the entropy of the Sinai–Ruelle–Bowen measure and show that it is a continuous function on the space of strictly convex real projective structures.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
We give an equality condition for a symmetrization inequality for condensers proved by F.W. Gehring regarding elliptic areas. We then use this to obtain a monotonicity result involving the elliptic area of the image of a holomorphic function f.
Let $\mathbf{H}_{\mathbb{H}}^{n}$ denote the $n$-dimensional quaternionic hyperbolic space. The linear group $\text{Sp}(n,1)$ acts on $\mathbf{H}_{\mathbb{H}}^{n}$ by isometries. A subgroup $G$ of $\text{Sp}(n,1)$ is called Zariski dense if it neither fixes a point on $\mathbf{H}_{\mathbb{H}}^{n}\cup \unicode[STIX]{x2202}\mathbf{H}_{\mathbb{H}}^{n}$ nor preserves a totally geodesic subspace of $\mathbf{H}_{\mathbb{H}}^{n}$. We prove that a Zariski dense subgroup $G$ of $\text{Sp}(n,1)$ is discrete if for every loxodromic element $g\in G$ the two-generator subgroup $\langle f,gfg^{-1}\rangle$ is discrete, where the generator $f\in \text{Sp}(n,1)$ is a certain fixed element not necessarily from $G$.
A complex hyperbolic triangle group is a group generated by three involutions fixing complex lines in complex hyperbolic space. Our purpose in this paper is to improve a previous result and to discuss discreteness of complex hyperbolic triangle groups of type $(n,\,n,\,\infty ;\,k)$.
In this work, we investigate how to decompose a pair $\left( A,\,B \right)$ of loxodromic isometries of the complex hyperbolic plane $\mathbf{H}_{\mathbb{C}}^{2}$ under the form $A\,=\,{{I}_{1}}{{I}_{2}}$ and $B\,=\,{{I}_{3}}{{I}_{2}}$, where the ${{I}_{k}}$'s are involutions. The main result is a decomposability criterion, which is expressed in terms of traces of elements of the group $\left\langle A,\,B \right\rangle $.
Let n be the n-dimensional hyperbolic space with n ≥ 2. Suppose that G is a discrete, sense-preserving subgroup of Isomn, the isometry group of n. Let p be the projection map from n to the quotient space M = n/G. The first goal of this paper is to prove that for any a ∈ ∂n (the sphere at infinity of n), there exists an open neighbourhood U of a in n ∪ ∂ n such that p is an isometry on U ∩ n if and only if a ∈ oΩ(G) (the domain of proper discontinuity of G). This is a generalization of the main result discussed in the work by Y. D. Kim (A theorem on discrete, torsion free subgroups of Isomn, Geometriae Dedicata109 (2004), 51–57). The second goal is to obtain a new characterization for the elements of Isomn by using a class of hyperbolic geometric objects: hyperbolic isosceles right triangles. The proof is based on a geometric approach.
In this paper we introduce the concepts of hyperbolic and elliptic areas and prove uncountably many new geometric isoperimetric inequalities on the surfaces of constant curvature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.