We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The fixed points of the generalized Ricci flow are the Bismut Ricci flat (BRF) metrics, i.e., a generalized metric (g, H) on a manifold M, where g is a Riemannian metric and H a closed 3-form, such that H is g-harmonic and $\operatorname{Rc}(g)=\tfrac{1}{4} H_g^2$. Given two standard Einstein homogeneous spaces $G_i/K$, where each Gi is a compact simple Lie group and K is a closed subgroup of them holding some extra assumption, we consider $M=G_1\times G_2/\Delta K$. Recently, Lauret and Will proved the existence of a BRF metric on any of these spaces. We proved that this metric is always asymptotically stable for the generalized Ricci flow on M among a subset of G-invariant metrics and, if $G_1=G_2$, then it is globally stable.
Inspired by K. Fujita's algebro-geometric result that complex projective space has maximal degree among all K-semistable complex Fano varieties, we conjecture that the height of a K-semistable metrized arithmetic Fano variety $\mathcal {X}$ of relative dimension $n$ is maximal when $\mathcal {X}$ is the projective space over the integers, endowed with the Fubini–Study metric. Our main result establishes the conjecture for the canonical integral model of a toric Fano variety when $n\leq 6$ (the extension to higher dimensions is conditioned on a conjectural ‘gap hypothesis’ for the degree). Translated into toric Kähler geometry, this result yields a sharp lower bound on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi functional. Furthermore, we reformulate our conjecture as an optimal lower bound on Odaka's modular height. In any dimension $n$ it is shown how to control the height of the canonical toric model $\mathcal {X},$ with respect to the Kähler–Einstein metric, by the degree of $\mathcal {X}$. In a sequel to this paper our height conjecture is established for any projective diagonal Fano hypersurface, by exploiting a more general logarithmic setup.
This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the $(2n+1)$-dimensional unit sphere $\mathbb {S}^{2n+1}$ admitting a Sasakian structure $(\varphi,\,\xi,\,\eta,\,g)$ for $n\ge 3$, motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor $K:=-\varphi h$ is semi-parallel, which is introduced as a natural extension of $C$-parallel second fundamental form $h$. Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.
In this paper, we investigate the structure of certain solutions of the fully nonlinear Yamabe flow, which we call almost quotient Yamabe solitons as they extend quite naturally those already called quotient Yamabe solitons. We present sufficient conditions for a compact almost quotient Yamabe soliton to be either trivial or isometric with an Euclidean sphere. We also characterize noncompact almost gradient quotient Yamabe solitons satisfying certain conditions on both its Ricci tensor and potential function.
We prove that there exists at least one positive Einstein metric on $\mathbb {HP}^{m+1}\sharp \overline {\mathbb {HP}}^{m+1}$ for $m\geq ~2$. Based on the existence of the first Einstein metric, we give a criterion to check the existence of a second Einstein metric on $\mathbb {HP}^{m+1}\sharp \overline {\mathbb {HP}}^{m+1}$. We also investigate the existence of cohomogeneity-one positive Einstein metrics on $\mathbb {S}^{4m+4}$ and prove the existence of a non-standard Einstein metric on $\mathbb {S}^8$.
We systematically study calibrated geometry in hyperkähler cones $C^{4n+4}$, their 3-Sasakian links $M^{4n+3}$, and the corresponding twistor spaces $Z^{4n+2}$, emphasizing the relationships between submanifold geometries in various spaces. Our analysis highlights the role played by a canonical $\mathrm {Sp}(n)\mathrm {U}(1)$-structure $\gamma $ on the twistor space Z. We observe that $\mathrm {Re}(e^{- i \theta } \gamma )$ is an $S^1$-family of semi-calibrations and make a detailed study of their associated calibrated geometries. As an application, we obtain new characterizations of complex Lagrangian and complex isotropic cones in hyperkähler cones, generalizing a result of Ejiri–Tsukada. We also generalize a theorem of Storm on submanifolds of twistor spaces that are Lagrangian with respect to both the Kähler–Einstein and nearly Kähler structures.
We consider the broadest concept of the gradient Yamabe soliton, the conformal gradient soliton. In this paper, we elucidate the structure of complete gradient conformal solitons under some assumption, and provide some applications to gradient Yamabe solitons. These results enhance the understanding gained from previous research. Furthermore, we give an affirmative partial answer to the Yamabe soliton version of Perelman’s conjecture.
In this paper, we present a sufficient condition for almost Yamabe solitons to have constant scalar curvature. Additionally, under some geometric scenarios, we provide some triviality and rigidity results for these structures.
We develop the theory of left-invariant generalized pseudo-Riemannian metrics on Lie groups. Such a metric accompanied by a choice of left-invariant divergence operator gives rise to a Ricci curvature tensor, and we study the corresponding Einstein equation. We compute the Ricci tensor in terms of the tensors (on the sum of the Lie algebra and its dual) encoding the Courant algebroid structure, the generalized metric, and the divergence operator. The resulting expression is polynomial and homogeneous of degree 2 in the coefficients of the Dorfman bracket and the divergence operator with respect to a left-invariant orthonormal basis for the generalized metric. We determine all generalized Einstein metrics on three-dimensional Lie groups.
We show that the singularities of the twisted Kähler–Einstein metric arising as the longtime solution of the Kähler–Ricci flow or in the collapsed limit of Ricci-flat Kähler metrics are intimately related to the holomorphic sectional curvature of reference conical geometry. This provides an alternative proof of the second-order estimate obtained by Gross, Tosatti, and Zhang (2020, Preprint, arXiv:1911.07315) with explicit constants appearing in the divisorial pole.
We construct examples of compact homogeneous Riemannian manifolds admitting an invariant Bismut connection that is Ricci flat and non-flat, proving in this way that the generalized Alekseevsky–Kimelfeld theorem does not hold. The classification of compact homogeneous Bismut Ricci flat spaces in dimension $5$ is also provided. Moreover, we investigate compact homogeneous spaces with non-trivial third Betti number, and we point out other possible ways to construct Bismut Ricci flat manifolds. Finally, since Bismut Ricci flat connections correspond to fixed points of the generalized Ricci flow, we discuss the stability of some of our examples under the flow.
We investigate the geometry of Hermitian manifolds endowed with a compact Lie group action by holomorphic isometries with principal orbits of codimension one. In particular, we focus on a special class of these manifolds constructed by following Bérard-Bergery which includes, among the others, the holomorphic line bundles on $\mathbb {C}\mathbb {P}^{m-1}$, the linear Hopf manifolds and the Hirzebruch surfaces. We characterize their invariant special Hermitian metrics, such as balanced, Kähler-like, pluriclosed, locally conformally Kähler, Vaisman and Gauduchon. Furthermore, we construct new examples of cohomogeneity one Hermitian metrics solving the second-Chern–Einstein equation and the constant Chern-scalar curvature equation.
The
$\rho $
-Einstein soliton is a self-similar solution of the Ricci–Bourguignon flow, which includes or relates to some famous geometric solitons, for example, the Ricci soliton and the Yamabe soliton, and so on. This paper deals with the study of
$\rho $
-Einstein solitons on Sasakian manifolds. First, we prove that if a Sasakian manifold M admits a nontrivial
$\rho $
-Einstein soliton
$(M,g,V,\lambda )$
, then M is
$\mathcal {D}$
-homothetically fixed null
$\eta $
-Einstein and the soliton vector field V is Jacobi field along trajectories of the Reeb vector field
$\xi $
, nonstrict infinitesimal contact transformation and leaves
$\varphi $
invariant. Next, we find two sufficient conditions for a compact
$\rho $
-Einstein almost soliton to be trivial (Einstein) under the assumption that the soliton vector field is an infinitesimal contact transformation or is parallel to the Reeb vector field
$\xi $
.
The aim of this paper is to study complete (noncompact) m-quasi-Einstein manifolds with λ=0 satisfying a fourth-order vanishing condition on the Weyl tensor and zero radial Weyl curvature. In this case, we are able to prove that an m-quasi-Einstein manifold (m>1) with λ=0 on a simply connected n-dimensional manifold(Mn, g), (n ≥ 4), of nonnegative Ricci curvature and zero radial Weyl curvature must be a warped product with (n–1)–dimensional Einstein fiber, provided that M has fourth-order divergence-free Weyl tensor (i.e. div4W =0).
In this note, we prove that a four-dimensional compact oriented half-conformally flat Riemannian manifold M4 is topologically
$\mathbb{S}^{4}$
or
$\mathbb{C}\mathbb{P}^{2}$
, provided that the sectional curvatures all lie in the interval
$\left[ {{{3\sqrt {3 - 5} } \over 4}, 1} \right]$
In addition, we use the notion of biorthogonal (sectional) curvature to obtain a pinching condition which guarantees that a four-dimensional compact manifold is homeomorphic to a connected sum of copies of the complex projective plane or the 4-sphere.
Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a convergent subsequence. As an application, we prove the existence of global moduli spaces of scalar-flat Kähler ALE metrics for several infinite families of Kähler ALE spaces.
We prove the existence of a one-parameter family of nearly parallel G2-structures on the manifold $\text{S}^{3}\times \mathbb{R}^{4}$, which are mutually non-isomorphic and invariant under the cohomogeneity one action of the group SU(2)3. This family connects the two locally homogeneous nearly parallel G2-structures that are induced by the homogeneous ones on the sphere S7.
The object of this paper is to study Yamabe solitons on almost co-Kähler manifolds as well as on $(k,\unicode[STIX]{x1D707})$-almost co-Kähler manifolds. We also study Ricci solitons on $(k,\unicode[STIX]{x1D707})$-almost co-Kähler manifolds.
In this paper, we prove that if an almost co-Kähler manifold of dimension greater than three satisfying $\unicode[STIX]{x1D702}$-Einstein condition with constant coefficients is a Ricci soliton with potential vector field being of constant length, then either the manifold is Einstein or the Reeb vector field is parallel. Let $M$ be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector field $\unicode[STIX]{x1D709}$ is an eigenvector field of the Ricci operator. If $M$ is a Ricci soliton with transversal potential vector field, then it is locally isometric to Lie group $E(1,1)$ of rigid motions of the Minkowski 2-space.