We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the
$E_2$
-algebra
$\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$
consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion
$\Omega B\Lambda \mathfrak {M}_{*,1}$
: it is the product of
$\Omega ^{\infty }\mathbf {MTSO}(2)$
with a certain free
$\Omega ^{\infty }$
-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups
$\Gamma _{g,n}$
with
$g\geqslant 0$
and
$n\geqslant 1$
.
Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$-equivariant homology
$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free loop space of X preserves the Hodge decomposition of
$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $, making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].
We introduce a notion of Koszul A∞-algebra that generalizes Priddy's notion of a Koszul algebra and we use it to construct small A∞-algebra models for Hochschild cochains. As an application, this yields new techniques for computing free loop space homology algebras of manifolds that are either formal or coformal (over a field or over the integers). We illustrate these techniques in two examples.
For almost any compact connected Lie group $G$ and any field $\mathbb{F}_{p}$, we compute the Batalin–Vilkovisky algebra $H^{\star +\text{dim}\,G}(\text{LBG};\mathbb{F}_{p})$ on the loop cohomology of the classifying space introduced by Chataur and the second author. In particular, if $p$ is odd or $p=0$, this Batalin–Vilkovisky algebra is isomorphic to the Hochschild cohomology $HH^{\star }(H_{\star }(G),H_{\star }(G))$. Over $\mathbb{F}_{2}$ , such an isomorphism of Batalin–Vilkovisky algebras does not hold when $G=\text{SO}(3)$ or $G=G_{2}$. Our elaborate considerations on the signs in string topology of the classifying spaces give rise to a general theorem on graded homological conformal field theory.
In this paper, we define the notion of ${{R}_{*}}\text{-LS}$ category associated to an increasing system of subrings of $\mathbb{Q}$ and we relate it to the usual $\text{LS}$-category. We also relate it to the invariant introduced by Félix and Lemaire in tame homotopy theory, in which case we give a description in terms of Lie algebras and of cocommutative coalgebras, extending results of Lemaire-Sigrist and Félix-Halperin.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.