We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the classical map comparing Adams’ cobar construction on the singular chains of a pointed space and the singular cubical chains on its based loop space is a quasi-isomorphism preserving explicitly defined monoidal $E_\infty $-coalgebra structures. This contribution extends to its ultimate conclusion a result of Baues, stating that Adams’ map preserves monoidal coalgebra structures.
We present extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes, providing a common generalization to the matroidal versions of the theorem due to Kalai and Meshulam, the ‘very colorful’ Helly theorem introduced by Arocha, Bárány, Bracho, Fabila and Montejano and the ‘semi-intersecting’ colorful Helly theorem proved by Montejano and Karasev.
As an application, we obtain the following extension of Tverberg’s theorem: Let A be a finite set of points in ${\mathbb R}^d$ with $|A|>(r-1)(d+1)$. Then, there exist a partition $A_1,\ldots ,A_r$ of A and a subset $B\subset A$ of size $(r-1)(d+1)$ such that $\cap _{i=1}^r \operatorname {\mathrm {\text {conv}}}( (B\cup \{p\})\cap A_i)\neq \emptyset $ for all $p\in A\setminus B$. That is, we obtain a partition of A into r parts that remains a Tverberg partition even after removing all but one arbitrary point from $A\setminus B$.
Given a graph G without loops, the pseudograph associahedron PG is a smooth polytope, so there is a projective smooth toric variety XG corresponding to PG. Taking the real locus of XG, we have the projective smooth real toric variety $X^{\mathbb{R}}_G$. The integral cohomology groups of $X^{\mathbb{R}}_G$ can be computed by studying the topology of certain posets of even subgraphs of G; such a poset is neither pure nor shellable in general. We completely characterize the graphs whose posets of even subgraphs are always shellable. It follows that we get a family of projective smooth real toric varieties whose integral cohomology groups are torsion-free or have only 2-torsion.
We recall several categories of graphs which are useful for describing homotopy-coherent versions of generalised operads (e.g. cyclic operads, modular operads, properads, and so on), and give new, uniform definitions for their morphisms. This allows for straightforward comparisons, and we use this to show that certain free-forgetful adjunctions between categories of generalised operads can be realised at the level of presheaves. This includes adjunctions between operads and cyclic operads, between dioperads and augmented cyclic operads, and between wheeled properads and modular operads.
A simple polytope P is called B-rigid if its combinatorial type is determined by the cohomology ring of the moment-angle manifold $\mathcal {Z}_P$ over P. We show that any tensor product decomposition of this cohomology ring is geometrically realized by a product decomposition of the moment-angle manifold up to equivariant diffeomorphism. As an application, we find that B-rigid polytopes are closed under products, generalizing some recent results in the toric topology literature. Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex decomposes as a join of full subcomplexes.
We study the geometric and topological features of U-statistics of order k when the k-tuples satisfying geometric and topological constraints do not occur frequently. Using appropriate scaling, we establish the convergence of U-statistics in vague topology, while the structure of a non-degenerate limit measure is also revealed. Our general result shows various limit theorems for geometric and topological statistics, including persistent Betti numbers of Čech complexes, the volume of simplices, a functional of the Morse critical points, and values of the min-type distance function. The required vague convergence can be obtained as a result of the limit theorem for point processes induced by U-statistics. The latter convergence particularly occurs in the
$\mathcal M_0$
-topology.
For a category
$\mathcal {E}$
with finite limits and well-behaved countable coproducts, we construct a model structure, called the effective model structure, on the category of simplicial objects in
$\mathcal {E}$
, generalising the Kan–Quillen model structure on simplicial sets. We then prove that the effective model structure is left and right proper and satisfies descent in the sense of Rezk. As a consequence, we obtain that the associated
$\infty $
-category has finite limits, colimits satisfying descent, and is locally Cartesian closed when
$\mathcal {E}$
is but is not a higher topos in general. We also characterise the
$\infty $
-category presented by the effective model structure, showing that it is the full sub-category of presheaves on
$\mathcal {E}$
spanned by Kan complexes in
$\mathcal {E}$
, a result that suggests a close analogy with the theory of exact completions.
We show that the Lascar group
$\operatorname {Gal}_L(T)$
of a first-order theory T is naturally isomorphic to the fundamental group
$\pi _1(|\mathrm {Mod}(T)|)$
of the classifying space of the category of models of T and elementary embeddings. We use this identification to compute the Lascar groups of several example theories via homotopy-theoretic methods, and in fact completely characterize the homotopy type of
$|\mathrm {Mod}(T)|$
for these theories T. It turns out that in each of these cases,
$|\operatorname {Mod}(T)|$
is aspherical, i.e., its higher homotopy groups vanish. This raises the question of which homotopy types are of the form
$|\mathrm {Mod}(T)|$
in general. As a preliminary step towards answering this question, we show that every homotopy type is of the form
$|\mathcal {C}|$
where
$\mathcal {C}$
is an Abstract Elementary Class with amalgamation for
$\kappa $
-small objects, where
$\kappa $
may be taken arbitrarily large. This result is improved in another paper.
This study presents functional limit theorems for the Euler characteristic of Vietoris–Rips complexes. The points are drawn from a nonhomogeneous Poisson process on
$\mathbb{R}^d$
, and the connectivity radius governing the formation of simplices is taken as a function of the time parameter t, which allows us to treat the Euler characteristic as a stochastic process. The setting in which this takes place is that of the critical regime, in which the simplicial complexes are highly connected and have nontrivial topology. We establish two ‘functional-level’ limit theorems, a strong law of large numbers and a central limit theorem, for the appropriately normalized Euler characteristic process.
Drawing on the analogy between any unary first-order quantifier and a “face operator,” this paper establishes several connections between model theory and homotopy theory. The concept of simplicial set is brought into play to describe the formulae of any first-order language L, the definable subsets of any L-structure, as well as the type spaces of any theory expressed in L. An adjunction result is then proved between the category of o-minimal structures and a subcategory of the category of linearly ordered simplicial sets with distinguished vertices.
We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$, endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.
The objective of this study is to examine the asymptotic behavior of Betti numbers of Čech complexes treated as stochastic processes and formed from random points in the d-dimensional Euclidean space
${\mathbb{R}}^d$
. We consider the case where the points of the Čech complex are generated by a Poisson process with intensity nf for a probability density f. We look at the cases where the behavior of the connectivity radius of the Čech complex causes simplices of dimension greater than
$k+1$
to vanish in probability, the so-called sparse regime, as well when the connectivity radius is of the order of
$n^{-1/d}$
, the critical regime. We establish limit theorems in the aforementioned regimes: central limit theorems for the sparse and critical regimes, and a Poisson limit theorem for the sparse regime. When the connectivity radius of the Čech complex is
$o(n^{-1/d})$
, i.e. the sparse regime, we can decompose the limiting processes into a time-changed Brownian motion or a time-changed homogeneous Poisson process respectively. In the critical regime, the limiting process is a centered Gaussian process but has a much more complicated representation, because the Čech complex becomes highly connected with many topological holes of any dimension.
Component graphs $\unicode[STIX]{x1D6E4}_{0}(F)$ are defined for arrays of sets $F$, and, in particular, for arrays of path components for Vietoris–Rips complexes and Lesnick complexes. The path components of $\unicode[STIX]{x1D6E4}_{0}(F)$ are the stable components of the array $F$. The stable components for the system of Lesnick complexes $\{L_{s,k}(X)\}$ for a finite data set $X$ decompose into layers, which are themselves path components of a graph. Combinatorial scoring functions are defined for layers and stable components.
We prove a $\unicode[STIX]{x1D6E4}$-equivariant version of the algebraic index theorem, where $\unicode[STIX]{x1D6E4}$ is a discrete group of automorphisms of a formal deformation of a symplectic manifold. The particular cases of this result are the algebraic version of the transversal index theorem related to the theorem of A. Connes and H. Moscovici for hypo-elliptic operators and the index theorem for the extension of the algebra of pseudodifferential operators by a group of diffeomorphisms of the underlying manifold due to A. Savin, B. Sternin, E. Schrohe and D. Perrot.
A natural composition ⊙ on all pages of the lower central series spectral sequence for spheres is defined. Moreover, it is defined for the p-lower central series spectral sequence of a simplicial group. It is proved that the rth differential satisfies a ‘Leibniz rule with suspension’: dr(a ⊙ σ b) = ±dra ⊙ b + a ⊙ dr σ b, where σ is the suspension homomorphism.
We consider a time varying analogue of the Erdős–Rényi graph and study the topological variations of its associated clique complex. The dynamics of the graph are stationary and are determined by the edges, which evolve independently as continuous-time Markov chains. Our main result is that when the edge inclusion probability is of the form p=nα, where n is the number of vertices and α∈(-1/k, -1/(k + 1)), then the process of the normalised kth Betti number of these dynamic clique complexes converges weakly to the Ornstein–Uhlenbeck process as n→∞.
We introduce a notion of n-quasi-categories as fibrant objects of a model category structure on presheaves on Joyal's n-cell category Θn. Our definition comes from an idea of Cisinski and Joyal. However, we show that this idea has to be slightly modified to get a reasonable notion. We construct two Quillen equivalences between the model category of n-quasi-categories and the model category of Rezk Θn-spaces, showing that n-quasi-categories are a model for (∞, n)-categories. For n = 1, we recover the two Quillen equivalences defined by Joyal and Tierney between quasi-categories and complete Segal spaces.
We classify flag complexes on at most 12 vertices with torsion in the first homology group. The result is moderately computer-aided.
As a consequence we confirm a folklore conjecture that the smallest poset whose order complex is homotopy equivalent to the real projective plane (and also the smallest poset with torsion in the first homology group) has exactly 13 elements.
Given a Poisson process on a d-dimensional torus, its random geometric simplicial complex is the complex whose vertices are the points of the Poisson process and simplices are given by the C̆ech complex associated to the coverage of each point. By means of Malliavin calculus, we compute explicitly the three first-order moments of the number of k-simplices, and provide a way to compute higher-order moments. Then we derive the mean and the variance of the Euler characteristic. Using the Stein method, we estimate the speed of convergence of the number of occurrences of any connected subcomplex as it converges towards the Gaussian law when the intensity of the Poisson point process tends to infinity. We use a concentration inequality for Poisson processes to find bounds for the tail distribution of the Betti number of first order and the Euler characteristic in such simplicial complexes.