We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we present Thom’s transversality theorem in o-minimal structures (a generalization of semialgebraic and subanalytic geometry). There are no restrictions on the differentiability class and the dimensions of manifolds involved in comparison withthe general case.
Some geometrical properties associated to the contact of submanifolds with hyperhorospheres in hyperbolic $n$-space are studied as an application of the theory of Legendrian singularities.
Sun and Wilson defined the notion of infinite determinacy of a smooth function germ singular along a line, and related this notion to some good geometric properties of derived objects related to the given function germ. The paper extends their results to a wider class of smooth function with prescribed non-isolated singularities. For this purpose, it was necessary to study the behaviour of the function germ along a transverse direction of the given singular set, and to relate these properties to geometric properties of the function and derived objects, expressed in terms of relative Łojasiewicz conditions.
In singularity theory, J. Damon gave elegant versions of the unfolding
and determinacy theorems for geometric subgroups of . and . In this work, we propose a unified treatment of the smooth stability of germs and the structural stability of versai unfoldings for a large class of such subgroups.
Let π: M —> Rn be the blowing-up of Rn at the origin. Then a continuous map-germ f: (Rn — 0,0) —> Rm is called blow analytic if there exists an analytic map-germ such that Then an inverse mapping theorem for blow analytic mappings as a generalization of classical theorem is shown. And the following is shown. Theorem: The analytic family of blow analytic functions with isolated singularities admits an analytic trivialization after blowing-up.
In their book Singularities and Groups in Bifurcation Theory M. Golubitsky, I. Stewart and D. Schaeffer have introduced an equivariant version of Martinet's notion of V (for variety)-equivalence with parameter. In this paper we give a unified proof that, in this context, infinitesimal stability is equivalent to stability at the local level of germs and that stability in the unfolding category is equivalent to versality.
A wavefront set is defined to be an image of Legendrian mapping. In this note we prove that generic wavefront sets have stable local topological structures by using Mather's stratification theory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.