We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To explore the difficulties of classifying actions with the tracial Rokhlin property using K-theoretic data, we construct two $\mathbb{Z}_{2}$ actions $\unicode[STIX]{x1D6FC}_{1},\unicode[STIX]{x1D6FC}_{2}$ on a simple unital AF algebra $A$ such that $\unicode[STIX]{x1D6FC}_{1}$ has the tracial Rokhlin property and $\unicode[STIX]{x1D6FC}_{2}$ does not, while $(\unicode[STIX]{x1D6FC}_{1})_{\ast }=(\unicode[STIX]{x1D6FC}_{2})_{\ast }$, where $(\unicode[STIX]{x1D6FC}_{i})_{\ast }$ is the induced map by $\unicode[STIX]{x1D6FC}_{i}$ acting on $K_{0}(A)$ for $i=1,2$.
A category structure for Bratteli diagrams is proposed and a functor from the category of $\text{AF}$ algebras to the category of Bratteli diagrams is constructed. Since isomorphism of Bratteli diagrams in this category coincides with Bratteli’s notion of equivalence, we obtain in particular a functorial formulation of Bratteli’s classification of $\text{AF}$ algebras (and at the same time, of Glimm’s classification of $\text{UHF}$ algebras). It is shown that the three approaches to classification of $\text{AF}$ algebras, namely, through Bratteli diagrams, $\text{K}$-theory, and a certain natural abstract classifying category, are essentially the same from a categorical point of view.
Berg's interchange technique is generalized to the context of certain new objects called pseudo-actions. This is used to find a more geometric proof of the Pimsner-Voiculescu theorem on the AF embedding of the irrational rotation algebras. Connections with Berg's original results are briefly examined.
Embedding diagrams are introduced to provide a uniform way of describing embeddings of transformation group C*-algebras C(X) ⋊ ℤ into AF algebras. Pimsner has classified the transformation group C* -algebras which can be AF embedded. We present a new proof of this result using embedding diagrams and pseudo-actions. The need to calculate the join of an open cover with its iterates under the transformation has been eliminated.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.