To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sums of the ratings that judges assign to wines are a near universal method of determining the winners and losers of wine competitions. Sums are easy to calculate and easy to communicate, but seven flaws make sums of ratings a perilous guide to relative quality or preference. Stars & Bars combinatorics show that the same sum can be the result of billions of compositions of ratings and that those compositions, for the same sum, can contain dispersion that ranges from universal consensus to apparent randomness to polar disagreement. Order preference models can address both order and dispersion, and an example using a Plackett–Luce model yields maximum likelihood estimates of top-choice probabilities that are a defensible guide to relative quality or preference.
Inspired by Adler’s idea on VC minimal theories [1], we introduce VC-minimal complexity. We show that for any $N\in \mathbb {N}^{>0}$, there is $k_N>0$ such that for any finite bipartite graph $(X,Y;E)$ with VC-minimal complexity $< N$, there exist $X'\subseteq X$, $Y'\subseteq Y$ with $|X'|\geq k_N |X|$, $|Y'|\geq k_N |Y|$ such that $X'\times Y' \subseteq E$ or $X'\times Y'\cap E=\emptyset $.
We provide polynomial upper bounds for the minimal sizes of distal cell decompositions in several kinds of distal structures, particularly weakly o-minimal and P-minimal structures. The bound in general weakly o-minimal structures generalizes the vertical cell decomposition for semialgebraic sets, and the bounds for vector spaces in both o-minimal and p-adic cases are tight. We apply these bounds to Zarankiewicz’s problem in distal structures.
We present a combinatorial proof for the existence of the sign-refined grid homology in lens spaces and a self-contained proof that $\partial _{\mathbb{Z}}^2 = 0$. We also present a Sage programme that computes $\widehat{\mathrm{GH}} (L(p,q),K;\mathbb{Z})$ and provide empirical evidence supporting the absence of torsion in these groups.
Many arguments in the corpus of mathematical anti-evolutionism are drawn from probability theory. We describe the basic mathematical ideas underlying probability, as well as the closely related branch of mathematics known as combinatorics. We then discuss and refute the major probabilistic arguments made by anti-evolutionists.
We consider a subshift of finite type on q symbols with a union of t cylinders based at words of identical length p as the hole. We explore the relationship between the escape rate into the hole and a rational function, $r(z)$, of correlations between forbidden words in the subshift with the hole. In particular, we prove that there exists a constant $D(t,p)$ such that if $q>D(t,p)$, then the escape rate is faster into the hole when the value of the corresponding rational function $r(z)$ evaluated at $D(t,p)$ is larger. Further, we consider holes which are unions of cylinders based at words of identical length, having zero cross-correlations, and prove that the escape rate is faster into the hole with larger Poincaré recurrence time. Our results are more general than the existing ones known for maps conjugate to a full shift with a single cylinder as the hole.
Let $\mathrm{AP}_k=\{a,a+d,\ldots,a+(k-1)d\}$ be an arithmetic progression. For $\varepsilon>0$ we call a set $\mathrm{AP}_k(\varepsilon)=\{x_0,\ldots,x_{k-1}\}$ an $\varepsilon$-approximate arithmetic progression if for some a and d, $|x_i-(a+id)|<\varepsilon d$ holds for all $i\in\{0,1\ldots,k-1\}$. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom.2(1) 16–29), in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson like results in which arithmetic progressions and their higher dimensional extensions are replaced by their $\varepsilon$-approximation.
The aim of this chapter is to introduce the formal theory of general orthogonal polynomials and present the two dual combinatorial approaches due to Foata for the special function aspects of the orthogonal polynomials, and to Flajolet and Viennot for the lattice paths models used for the moments and general orthogonal polynomials. After reviewing the standard interplay between orthogonal polynomials and combinatorics, influenced by their pioneering works, we will report on some recent topics developed in this cross-cutting field of these two branches of mathematics.
The field of flat-foldable origami is introduced, which involves a mix of geometry and combinantorics.This chapter focuses on local properties of flat origami, meaning the study of how and when a single vertex in an origami crease pattern will be able to fold flat.The classic theorems of Kawasaki and Maekawa are proved and generalizations are made to folding vertices on cone-shaped (i.e., non-developable) paper.The problem of counting valid mountain-valley assignments of flat-foldable vertices is solved, and the configuration space of flat-foldable vertices of a fixed degree is characterized.A matrix model for formalizing flat-vertex folds is introduced, and the chapter ends with historical notes on this topic.
Chapter 7 delves into a handful of combinatorial problems in flat origami theory that are more general than the single-vertex problems considered in Chapter 5. First, we count the number of locally-valid mountain-valley assignments of certain origami tessellations, like the square twist and Miura-ori tessellations. Then the stamp-folding problem is discussed, where the crease pattern is a grid of squares and we want to fold them into a one-stamp pile in as many ways as possible.Then the tethered membrane model of polymer folding is considered from soft-matter physics, which translates into origami as counting the number of flat-foldable crease patterns that can be made as a subset of edges from the regular triangle lattice.Many of these problems establish connections between flat foldings and graph colorings and statistical mechanics.
Origami, the art of paper folding, has a rich mathematical theory. Early investigations go back to at least the 1930s, but the twenty-first century has seen a remarkable blossoming of the mathematics of folding. Besides its use in describing origami and designing new models, it is also finding real-world applications from building nano-scale robots to deploying large solar arrays in space. Written by a world expert on the subject, Origametry is the first complete reference on the mathematics of origami. It brings together historical results, modern developments, and future directions into a cohesive whole. Over 180 figures illustrate the constructions described while numerous 'diversions' provide jumping-off points for readers to deepen their understanding. This book is an essential reference for researchers of origami mathematics and its applications in physics, engineering, and design. Educators, students, and enthusiasts will also find much to enjoy in this fascinating account of the mathematics of folding.
This volume contains eight survey articles based on the invited lectures given at the 27th British Combinatorial Conference, held at the University of Birmingham in July 2019. This biennial conference is a well-established international event, with speakers from around the world. The volume provides an up-to-date overview of current research in several areas of combinatorics, including graph theory, cryptography, matroids, incidence geometries and graph limits. Each article is clearly written and assumes little prior knowledge on the part of the reader. The authors are some of the world's foremost researchers in their fields, and here they summarise existing results and give a unique preview of cutting-edge developments. The book provides a valuable survey of the present state of knowledge in combinatorics, and will be useful to researchers and advanced graduate students, primarily in mathematics but also in computer science and statistics.
In this paper we analyze a known relaxation for the Sparsest Cut problem based on positive semidefinite constraints, and we present a branch and bound algorithm and heuristics based on this relaxation. The relaxed formulation and the algorithms were tested on small and moderate sized instances. It leads to values very close to the optimum solution values. The exact algorithm could obtain solutions for small and moderate sized instances, and the best heuristics obtained optimum or near optimum solutions for all testedinstances. The semidefinite relaxation gives a lower bound $\frac{C}{W}$ and each heuristic produces a cut S with a ratio $\frac{c_S}{w_S}$, where either cS is at most a factor of C or wS is at least a factor of W. We solved the semidefinite relaxation using a semi-infinite cut generation with a commercial linear programming package adapted to the sparsest cut problem. We showed that the proposed strategy leads to a better performance compared to the use of a known semidefinite programming solver.
In this paper, we present a combinatorial proof for an identity involving the triangular numbers. The proof resembles Franklin’s proof of Euler’s pentagonal number theorem.
For typical optimization problems, the design space of interest is well defined: It is a subset of Rn, where n is the number of (continuous) variables. Constraints are often introduced to eliminate infeasible regions of this space from consideration. Many engineering design problems can be formulated as search in such a design space. For configuration design problems, however, the design space is much more difficult to define precisely, particularly when constraints are present. Configuration design spaces are discrete and combinatorial in nature, but not necessarily purely combinatorial, as certain combinations represent infeasible designs. One of our primary design objectives is to drastically reduce the effort to explore large combinatorial design spaces. We believe it is imperative to develop methods for mathematically defining design spaces for configuration design. The purpose of this paper is to outline our approach to defining configuration design spaces for engineering design, with an emphasis on the mathematics of the spaces and their combinations into larger spaces that more completely capture design requirements. Specifically, we introduce design spaces that model physical connectivity, functionality, and assemblability considerations for a representative product family, a class of coffeemakers. Then, we show how these spaces can be combined into a “common” product variety design space. We demonstrate how constraints can be defined and applied to these spaces so that feasible design regions can be directly modeled. Additionally, we explore the topological and combinatorial properties of these spaces. The application of this design space modeling methodology is illustrated using the coffeemaker product family.
The distribution of the number of items drawn in a secretary problem, with an order s selection role and a success if any of the best s items is selected, is obtained by a probabilistic argument. Moments and asymptotics readily follow.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.