We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We focus on the statistics of SOC-related solar flare parameters in soft X-ray wavelengths, including their size and waiting time distributions. An early SOC model assumed a linear increase of the energy storage, but this pioneering model is not consistent with the expected correlation between the waiting time interval and the subsequently dissipated energy. The Neupert effect in solar flares implies a correlation between the hard X-ray fluence and the soft X-ray flux, which predicts identical size distributions for these two parameters. Quantifying of thermal flare energies in soft X-ray emitting plasma needs also to include radiative and conductive losses. The intermittency and bursty variability of the solar dynamo implies a nonstationary SOC driver, which yields a universal value for the power law slope of fluxes, but the power law slopes of waiting times vary with the flare rate. While our focus encompasses primarily SOC models, alternative models in terms of MHD turbulence can explain some characteristics of SOC features also, such as size distribution functions, Fourier spectra, and structure functions.
The ability of quadruped robots to overcome obstacles is a critical factor that limits their practical application. Here, a design concept and a control algorithm are presented that aim at enhancing the explosive force of quadruped robots during jumping by utilizing elastic energy storage components. The hind legs of the quadruped robot are designed as energy storage units. Tension springs are utilized as components for storing energy and are installed in a parallel structure on the hind leg. Energy is stored during the compression process of the robot’s torso and released during the jumping phase. The optimal foot force is calculated using a single rigid body model. The mapping relationship between the force applied to the foot and the resulting joint torque is established by developing a dynamic model of the hind legs. Simulation experiments were conducted using the Webots physics engine to compare the impact of varying spring stiffness on joint torque during the jumping process. This study determined the optimal spring stiffness under specific conditions. The hind legs’ torque saving ratio reaches 19%, and the energy-saving ratio reaches 13%, which validates the effectiveness and feasibility of integrating elastic energy storage components.
The second edition of this popular textbook has been extensively revised and brought up-to-date with new chapters addressing energy storage and off-grid systems. It provides a quantitative yet accessible overview of the renewable energy technologies that are essential for a net-zero carbon energy system. Covering wind, hydro, solar thermal, photovoltaic, ocean and bioenergy, the text is suitable for engineering undergraduates as well as graduate students from other numerate degrees. The technologies involved, background theory and how projects are developed, constructive and operated are described. Worked examples demonstrate the simple calculation techniques used and engage students by showing them how theory relates to real applications. Tutorial chapters provide background material supporting students from a range of disciplines, and there are over 150 end-of-chapter problems with answers. Online resources, restricted to instructors, provide additional material, including copies of the diagrams, full solutions to the problems and examples of extended exercises.
The second edition of this popular textbook has been extensively revised and brought up-to-date with new chapters addressing energy storage and off-grid systems. It provides a quantitative yet accessible overview of the renewable energy technologies that are essential for a net-zero carbon energy system. Covering wind, hydro, solar thermal, photovoltaic, ocean and bioenergy, the text is suitable for engineering undergraduates as well as graduate students from other numerate degrees. The technologies involved, background theory and how projects are developed, constructive and operated are described. Worked examples demonstrate the simple calculation techniques used and engage students by showing them how theory relates to real applications. Tutorial chapters provide background material supporting students from a range of disciplines, and there are over 150 end-of-chapter problems with answers. Online resources, restricted to instructors, provide additional material, including copies of the diagrams, full solutions to the problems and examples of extended exercises.
The second edition of this popular textbook has been extensively revised and brought up-to-date with new chapters addressing energy storage and off-grid systems. It provides a quantitative yet accessible overview of the renewable energy technologies that are essential for a net-zero carbon energy system. Covering wind, hydro, solar thermal, photovoltaic, ocean and bioenergy, the text is suitable for engineering undergraduates as well as graduate students from other numerate degrees. The technologies involved, background theory and how projects are developed, constructive and operated are described. Worked examples demonstrate the simple calculation techniques used and engage students by showing them how theory relates to real applications. Tutorial chapters provide background material supporting students from a range of disciplines, and there are over 150 end-of-chapter problems with answers. Online resources, restricted to instructors, provide additional material, including copies of the diagrams, full solutions to the problems and examples of extended exercises.
Fully revised and updated, this second edition provides students with a quantitative and accessible introduction to the renewable technologies at the heart of efforts to build a sustainable future. Key features include new chapters on essential topics in energy storage, off-grid systems, microgrids and community energy; revised chapters on energy and grid fundamentals, wind energy, hydro power, photovoltaic and solar thermal energy, marine energy and bioenergy; appendices on foundational topics in electrical engineering, heat transfer and fluid dynamics; discussion of how real-world projects are developed, constructed and operated; over 60 worked examples linking theory to real-world engineering applications; and over 150 end-of-chapter homework problems, with solutions for instructors. Accompanied online at www.cambridge.org/jenkins2e by extended exercises and datasets, enabling instructors to create unique projects and coursework, this new edition remains the ideal multi-disciplinary introduction to renewable energy, for senior undergraduate and graduate students in engineering and the physical sciences.
This chapter initially explains how dependencies are established when at least a part of an infrastructure system requires the provision of the service to function. Although the focus is on functional dependencies, this chapter also explores physical and conditional dependencies. Resilience metrics presented in previous chapters are broadened in order to represent the effect of dependencies on resilience levels. Dependencies established within an infrastructure system are also explained. The concept of buffer as a local storage of the resources related to the depending service is defined as part of these expanded metrics, and then it is exemplified by examining a practical application of such buffers: power plants for information and communication network (ICN) sites. After introducing the main concepts and ideas related to dependencies, this chapter takes a broader view by discussing interdependencies when those are established both directly and indirectly. The study of interdependencies for electric power grids and ICN also explores the relationship with other infrastructures, such as transportation networks and water distribution systems, and with community social systems.
This chapter is dedicated to examining strategies and technologies for improving power grids’ resilience. The first part of this chapter focuses on traditional power grids by presenting technologies and management approaches for improved resilience at the power generation, transmission, and distribution levels and by discussing strategies for enhanced withstanding capability or reduced restoration speed. The second part of this chapter explores the effect that the evolution of power grids into “smart” grids may likely have in the future. Advanced technologies that have already been implemented at all levels of power grids are discussed. Alternative power distribution approaches implemented at the load level, such as microgrids, able to significantly improve resilience with respect to traditional power grids, are also described in this chapter.
Explore sustainable electric power generation technology, from first principles to cutting-edge systems, in this in-depth resource. Including energy storage, carbon capture, hydrogen and hybrid systems, the detailed coverage includes performance estimation, operability concerns, economic trade-off and other intricate analyses, supported by implementable formulae, real-world data and tried-and-tested quantitative and qualitative estimating techniques. Starting from basic concepts and key equipment, this book builds to precise analysis of balance of plant operation through data and methods gained from decades of hands-on design, testing, operation and trouble-shooting. Gain the knowledge you need to operate in conditions beyond standard settings and environment, with thorough descriptions of off-design operations. Novel technologies become accessible with stripped-back descriptions and physics-based calculations. This book is an ideal companion for engineers in the gas turbine and electric power field.
Chapter Six introduces the overarching law provisions in the Energy Conservation Law related to low-carbon development targets, energy efficiency regulation, energy storage, and financial support prescribed to incentivise these mechanisms. Energy efficiency and energy storage are critical measures that can help China achieve the carbon neutrality objective in a cost-effective and sustainable manner. By improving the energy efficiency of industrial sectors, buildings, and transportation, China can reduce the amount of energy needed to achieve its economic and climate goals, which benefits energy security and emission reductions. This chapter examines the essential regulatory measures adopted by the Energy Conservation Law and critically analyses the regulatory development concerning energy efficiency and energy storage in China.
This chapter covers the basics of energy storage, i.e., why it is needed, when it is used, how it is used, its benefits, and the types of energy storage technologies. Special attention is given to thermal energy storage due to its usage in a variety of guises in renewable power applications.
Nutritional interventions often rely on subjective assessments of energy intake (EI), but these are susceptible to measurement error. To introduce an accelerometer-based intake-balance method for assessing EI using data from a time-restricted eating (TRE) trial. Nineteen participants with overweight/obesity (25–63 years old; 16 females) completed a 12-week intervention (NCT03129581) in a control group (unrestricted feeding; n 8) or TRE group (n 11). At the start and end of the intervention, body composition was assessed by dual-energy X-ray absorptiometry (DXA) and daily energy expenditure (EE) was assessed for 2 weeks via wrist-worn accelerometer. EI was back-calculated as the sum of net energy storage (from DXA) and EE (from accelerometer). Accelerometer-derived EI estimates were compared against estimates from the body weight planner of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Mean EI for the control group declined by 138 and 435 kJ/day for the accelerometer and NIDDK methods, respectively (both P ≥ 0·38), v. 1255 and 1469 kJ/day, respectively, for the TRE group (both P < 0·01). At follow-up, the accelerometer and NIDDK methods showed excellent group-level agreement (mean bias of −297 kJ/day across arms; standard error of estimate 1054 kJ/day) but high variability at the individual level (limits of agreement from −2414 to +1824 kJ/day). The accelerometer-based intake-balance method showed plausible sensitivity to change, and EI estimates were biologically and behaviourally plausible. The method may be a viable alternative to self-report EI measures. Future studies should assess criterion validity using doubly labelled water.
The application of energy storage within transmission and distribution grids as non-wire alternative solutions (NWS) is hindered by the lack of readily available analysis tools, standardized planning processes, and practical know-how. This Element provides a theoretical basis along with examples and real-world case studies to guide grid planners in the siting, sizing, and lifetime techno-economic evaluation of storage systems. Many applications are illustrated including feeder peak shaving, feeder reliability improvements, transmission reliability, transmission congestion relief, and renewable integration. Three case studies, based on the author's consulting experience, illustrate the versatility of the analysis methods and provide a guide to grid planners while tackling real world problems.
Energy storage systems (ESS) exist in a wide variety of sizes, shapes and technologies. An energy storage system's technology, i.e. the fundamental energy storage mechanism, naturally affects its important characteristics including cost, safety, performance, reliability, and longevity. However, while the underlying technology is important, a successful energy storage project relies on a thorough and thoughtful implementation of the technology to meet the project's goals. A successful implementation depends on how well the energy storage system is architected and assembled. The system's architecture can determine its performance and reliability, in concert with or even despite the technology it employs. It is possible for an energy storage system with a good storage technology to perform poorly when implemented with a suboptimal architecture, while other energy storage systems with mediocre storage technologies can perform well when implemented with superior architectures.
What are the benefits of electrified propulsion for large aircraft? What technology advancements are required to realize these benefits? How can the aerospace industry transition from today's technologies to state-of-the-art electrified systems? Learn the answers with this multidisciplinary text, combining expertise from leading researchers in electrified aircraft propulsion. The book includes broad coverage of electrification technologies – spanning power systems and power electronics, materials science, superconductivity and cryogenics, thermal management, battery chemistry, system design, and system optimization – and a clear-cut road map identifying remaining gaps between the current state-of-the-art and future performance technologies. Providing expert guidance on areas for future research and investment and an ideal introduction to cutting-edge advances and outstanding challenges in large electric aircraft design, this is a perfect resource for graduate students, researchers, electrical and aeronautical engineers, policymakers, and management professionals interested in next-generation commercial flight technologies.
The fact that diapause is programmed well in advance of its onset enables the insect to take preparative steps supporting its upcoming period of developmental arrest. Such steps frequently include modifications in the rate of pre-diapause development (most commonly a prolongation but sometimes an acceleration in development), acquisition of additional energy reserves (usually in the form of lipids), local or distant migration to overwintering sites, selection of a suitable microenvironment for spending the months of diapause, enhancement of the refuge (additional waterproofing, etc.), formation of aggregations, adjusting color to blend with the diapause environment, and making structural modifications (e.g., short- vs. long-winged forms), and, as seen in aphids, switching reproductive modes from parthenogenesis to sexual reproduction. These sorts of pervasive changes that occur even before diapause begin to underscore the idea that diapause is most appropriately viewed as an alternative life cycle, impacting more than just the diapause state.
This chapter discusses a multitude of energy storage mechanisms that include pumped storage hydro (PSH) systems and various forms of battery storage, as well as other forms of energy storage with varying levels of technical and commercial maturity. The role and importance of energy storage is changing with the introduction of renewable energy generation such as wind and solar photovoltaics whose output is inherently variable. This increasing generation variability has created a need for energy storage to provide energy balancing. This chapter discusses the different requirements for energy balancing within renewable-based power systems over various timescales. The requirements for balancing services will be met by different forms of energy storage, highlighting the need for a portfolio of energy storage technologies. Energy storage also provides other benefits for modern power systems including to provide network and systems services and to enhance system flexibility and resilience. This chapter concludes by exploring issues related to the integration of energy storage into electricity grids and reviews social research related to energy storage uptake.
Our society does not need energy per se. We use the various forms of energy to accomplish desired actions – commuting to work, keeping the interior of homes at comfortable temperatures, producing industrial goods, etc. The so-called “minimum energy” requirement for processes is actually a thermodynamic maximum, defined by exergy. The application of the exergy methodology determines the benchmark for the minimum energy resources that arerequired to perform the desired actions and tasks. The minimum energy benchmark is determined for several processes including: natural gas transportation, refrigeration, liquefaction, drying, water desalination, and petroleum refining. The energy requirements for the lighting, heating and air-conditioning of buildings are also calculated as well as the minimum energy for the transportation of goods and the commuting of persons in conventional and electric vehicles. Given their importance for the transition to renewable energy forms, the exergy method is applied to energy storage systems. Several examples in this chapter offer assistance and resources for the application of the exergy methodology to energy-consuming systems and processes.
We present a passive (unpowered) exoskeleton that assists the back during lifting. Our exoskeleton uses carbon fiber beams as the sole means to store energy and return it to the wearer. To motivate the design, we present general requirements for the design of a lifting exoskeleton, including calculating the required torque to support the torso for people of different weights and heights. We compare a number of methods of energy storage for exoskeletons in terms of mass, volume, hysteresis, and cycle life. We then discuss the design of our exoskeleton, and show how the torso assembly leads to balanced forces. We characterize the energy storage in the exoskeleton and the torque it provides during testing with human subjects. Ten participants performed freestyle, stoop, and squat lifts. Custom image processing software was used to extract the curvature of the carbon fiber beams in the exoskeleton to determine the stored energy. During freestyle lifting, it stores an average of 59.3 J and provides a peak torque of 71.7 Nm.
The validity of Mn element on enhanced energy storage performance and fatigue resistance of Mn-doped 0.7Na0.5Bi0.5TiO3–0.3Sr0.7Bi0.2TiO3 lead-free ferroelectric ceramics (BNT–BST–xMn) is certified by doping. The effects of Mn modification on the dielectric behavior, ferroelectric, energy storage properties, and AC impedance are comprehensively investigated. It is found that the average grain size of the ceramics modified by Mn additions is reduced slightly. Moreover, the relaxor properties are evidently enhanced with the increased Mn content. The AC impedance spectra can even better clarify the dielectric response and relaxor behavior. The results suggest that both of the dielectric response and relaxor behavior are determined by defects especially concentration of the oxygen vacancy. The superior energy storage properties are realized at x = 0.05 with an energy storage density (Wrec) of 1.33 J/cm3 as well as energy storage efficiency (η) of 86.2% at 100 kV/cm, accompanied with a superior thermal stability. BNT–BST–5Mn ceramics can maintain a stable energy storage performance within 106 fatigue cycles, indicating an excellent fatigue resistance.