We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vesta's surface composition provides insights on its internal structure, geological evolution, and space environment. The bulk igneous composition, the link to the howardite–eucrite–diogenite (HED) meteorites, and the differentiation into a crust and a mantle were confirmed by telescopic observations and by the Dawn mission. This chapter presents several key topics. The distribution of indigenous materials helps in understanding the structure and mineralogy of the crust and the thickness of the mantle as an insight to the geological evolution and history of the whole body. Hydroxylated, low-albedo areas indicate exogenous materials and widespread contamination of the surface by carbonaceous chondrites; this main result from the Dawn mission also has implications for the collisional history of Ceres. Finally, the characterization of surficial processes on Vesta clarifies the role of space weathering and lateral mixing. The surface composition studied from telescopic observations, geochemical measurements of the HED meteorites, and from the Dawn mission at Vesta is based on reflectance imaging spectroscopy, high-resolution imagery, and elemental data from gamma-ray and neutron spectroscopy. This chapter includes analyses of data from the Visible and InfraRed mapping spectrometer that benefited from improved instrument calibrations developed after the Dawn mission to Vesta and Ceres.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.