Two integral structures on the $\mathbb{Q}$-vector space of modular forms of weight two on $X_0(N)$ are compared at primes $p$ dividing $N$ at most once. When $p=2$ and $N$ is divisible by a prime that is $3$ mod $4$, this comparison leads to an algorithm for computing the space of weight one forms mod $2$ on $X_0(N/2)$. For $p$ arbitrary and $N>4$ prime to $p$, a way to compute the Hecke algebra of mod $p$ modular forms of weight one on $\varGamma_1(N)$ is presented, using forms of weight $p$, and, for $p=2$, parabolic group cohomology with mod $2$ coefficients. Appendix A is a letter of October 1987 from Mestre to Serre in which he reports on computations of weight one forms mod $2$ of prime level. Appendix B, by Wiese, reports on an implementation for $p=2$ in Magma, using Stein’s modular symbols package, with which Mestre’s computations are redone and slightly extended.