We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Groundwater and baseflow covering aquifers and their properties, gaining and losing streams, governing equations for groundwater flow, baseflow separation, baseflow models, parameter estimation, exponential decay and linear reservoir model.
Most near-surface geologic formations which contain water are unconsolidated porous rocks, broadly referred to as soils close to the surface, and as aquifers at greater depths. The relationship between the degree of water saturation of such a porous material and pressure of the water is referred to as the soil-water characteristic. The specific flow rate of water can usually be assumed to be proportional to the hydraulic gradient, according to Darcy’s law. The proportionality constant, called the hydraulic conductivity, generally exhibits anisotropy and scale dependency, and is a strong function of the degree of water saturation. Although some insight can be gained from theoretical estimation models, it is best determined by experiment. For certain problems it can be convenient to transform Darcy’s law into a diffusion equation, by making the flow rate proportional to the water content gradient. For rigid porous media, combination of the continuity equation with Darcy’s law yields the Richardson-Richards equation; under steady saturated conditions this becomes the Laplace equation. For elastic saturated porous media this combination leads to the Terzaghi and Jacob equations.
The basic equations in fluid mechanics are briefly recalled, starting from the Navier–Stokes equations for an incompressible fluid. Potential flow theory is quickly introduced, together with the generic boundary value problem satisfied by the velocity potential. Applications are made to a few basic cases, such as uniform accelerated flow around a cylinder and the waves generated by a piston wavemaker.
We study the asymptotic behaviour of the periodically mixed Zaremba problem. We cover the part of the boundary by a chess board with a small period (square size) $\varepsilon$ and impose the Dirichlet condition on black and the Neumann condition on white squares. As $\varepsilon \to 0$, we get the effective boundary condition which is always of the Dirichlet type. The Dirichlet data on the boundary, however, depend on the ratio between the magnitudes of the two boundary values.
In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism $\phi$. First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter $\phi$.
The eigenvalues and eigenfunctions of self-adjoint differential operators provide the basis functions with respect to which ordinary and partial differential equations can be solved.These methods are extensions of those used to solve linear systems of algebraic equations and ordinary differential equations.Eigenfunction expansions also provide the basis for advanced numerical methods, such as spectral methods, and data-reduction techniques, such as proper-orthogonal decomposition.
In this paper, we develop the isogeometric analysis of the dual boundary element method (IGA-DBEM) to solve the potential problem with a degenerate boundary. The non-uniform rational B-Spline (NURBS) based functions are employed to interpolate the geometry and physical function. To deal with the rank-deficiency problem due to the degenerate boundary, the hypersingular integral equation is introduced to promote the full rank for the influence matrix in the dual BEM. Finally, three numerical examples are given to verify the accuracy of our proposed method. Both circular and square domains subjected to the Dirichlet boundary condition are considered. The engineering problem containing a degenerate boundary is considered, e.g., a seepage flow problem with a sheet pile. Numerical results of the IGA-DBEM agree well with these of the exact solution and the original dual boundary element method.
Inviscid irrotational flow around a pair of coaxial disks is considered in the limit in which the distance 2h between the disks is small compared to their radius a. The disks have zero thickness and accelerate away from one another along their common axis. The added mass M of each accelerating disk is increased by the presence of the other disk. Analytic predictions are obtained when h/a ≪ 1, with M ~ πa/(8h)-ln(h/a)/2+0.77875+. . . The term O(a/h) can be obtained by means of an inviscid analysis of approximately unidirectional flow within the gap between the disks, but the correction terms have not been reported previously. The irrotational flow problem satisfies Neumann boundary conditions on the surface of the disks, but is otherwise analogous to the Dirichlet problem of the capacitance of a pair of charged disks, which has been the subject of much study and controversy.
We present a simple, accurate method for computing singular or nearly singular integrals on a smooth, closed surface, such as layer potentials for harmonic functions evaluated at points on or near the surface. The integral is computed with a regularized kernel and corrections are added for regularization and discretization, which are found from analysis near the singular point. The surface integrals are computed from a new quadrature rule using surface points which project onto grid points in coordinate planes. The method does not require coordinate charts on the surface or special treatment of the singularity other than the corrections. The accuracy is about O(h3), where h is the spacing in the background grid, uniformly with respect to the point of evaluation, on or near the surface. Improved accuracy is obtained for points on the surface. The treecode of Duan and Krasny for Ewald summation is used to perform sums. Numerical examples are presented with a variety of surfaces.
We have developed easy to use fast multipole method (FMM) libraries for the Laplace, low-frequency Helmholtz, and Stokes equations in two and three dimensions. The codes are based on a new method for applying translation operators and provide reasonable performance on either single core processors, or small multi-core systems using OpenMP.
Problems of wave interaction with a body with arbitrary shape floating or submerged in water are of immense importance in the literature on the linearized theory of water waves. Wave-free potentials are used to construct solutions to these problems involving bodies with circular geometry, such as a submerged or half-immersed long horizontal circular cylinder (in two dimensions) or sphere (in three dimensions). These are singular solutions of Laplace’s equation satisfying the free surface condition and decaying rapidly away from the point of singularity. Wave-free potentials in two and three dimensions for infinitely deep water as well as water of uniform finite depth with a free surface are known in the literature. The method of constructing wave-free potentials in three dimensions is presented here in a systematic manner, neglecting or taking into account the effect of surface tension at the free surface or for water with an ice cover modelled as a thin elastic plate floating on the water. The forms of the wave motion at the upper surface (free surface or ice-covered surface) related to these wave-free potentials are depicted graphically in a number of figures for all the cases considered.
Boundary integral methods are naturally suited for the computation of harmonic functions on a region having inclusions or cells with different material properties. However, accuracy deteriorates when the cell boundaries are close to each other. We present a boundary integral method in two dimensions which is specially designed to maintain second order accuracy even if boundaries are arbitrarily close. The method uses a regularization of the integral kernel which admits analytically determined corrections to maintain accuracy. For boundaries with many components we use the fast multipole method for efficient summation. We compute electric potentials on a domain with cells whose conductivity differs from that of the surrounding medium. We first solve an integral equation for a source term on the cell interfaces and then find values of the potential near the interfaces via integrals. Finally we use a Poisson solver to extend the potential to a regular grid covering the entire region. A number of examples are presented. We demonstrate that increased refinement is not needed to maintain accuracy as interfaces become very close.
In this paper, we introduce two Galerkin formulations of the Method of Fundamental Solutions (MFS). In contrast to the collocation formulation of the MFS, the proposed Galerkin formulations involve the evaluation of integrals over the boundary of the domain under consideration. On the other hand, these formulations lead to some desirable properties of the stiffness matrix such as symmetry in certain cases. Several numerical examples are considered by these methods and their various features compared.
We consider the Laplace equation posed in a three-dimensional axisymmetric domain. Wereduce the original problem by a Fourier expansion in the angular variable to a countablefamily of two-dimensional problems. We decompose the meridian domain, assumed polygonal,in a finite number of rectangles and we discretize by a spectral method. Then we describethe main features of the mortar method and use the algorithm Strang Fix to improve theaccuracy of our discretization.
The present paper reveals an analytically computational method for the inverse Cauchy problem of Laplace equation. For the sake of analyticity, and also for the frequent use of rectangular plate in engineering structure, we only consider the analytical solution in a two-dimensional rectangular domain, wherein a missing boundary condition is recovered from a partial measurement of the Neumann data on an accessible boundary. The Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we consider a Lavrentiev regularization amended to a second-kind Fredholm integral equation. The termwise separable property of kernel function allows us to obtain a closed-form solution of the regularization type. The uniform convergence and error estimation of the regularization solution are proven. The numerical examples show the effectiveness and robustness of the new method.
In this paper, we give a general proof on convergence estimates for some regularization methods to solve a Cauchy problem for the Laplace equation in a rectangular domain. The regularization methods we considered are: a non-local boundary value problem method, a boundary Tikhonov regularization method and a generalized method. Based on the conditional stability estimates, the convergence estimates for various regularization methods are easily obtained under the simple verifications of some conditions. Numerical results for one example show that the proposed numerical methods are effective and stable.
Cell-centered and vertex-centered finite volume schemes for the Laplace equationwith homogeneous Dirichlet boundary conditionsare considered on a triangular mesh and on the Voronoi diagram associated to its vertices.A broken P1 function is constructed from the solutions of both schemes.When the domain is two-dimensional polygonal convex,it is shown that this reconstructionconverges with second-order accuracy towards the exact solution in the L2 norm,under the sufficient condition that the right-hand side of the Laplace equation belongs to H1(Ω).
The Dirichlet problem for the Laplace equation in a connected-plane region with cuts is studied. The existence of a classical solution is proved by potential theory. The problem is reduced to a Fredholm equation of the second kind, which is uniquely solvable.
The main purpose of this paper is to investigate the pressure-stream function formulation to solve 2D and 3D Stokes flows by the meshless numerical scheme of the method of fundamental solutions (MFS). The MFS can be regarded as a truly scattered, grid-free (or meshless) and non-singular numerical scheme. By the proposed algorithm, the stream function is governed by the bi-harmonic equation while the pressure is governed by the Laplace equation. The velocity field is then obtained by the curl of the stream function for 2D flows and curl of the vector stream function for 3D flows. We can simultaneously solve the pressure, velocity, vorticity, stream function and traction forces fields. Furthermore during the present numerical procedure no pressure boundary condition is needed which is a tedious and forbidden task. The developed algorithm is used to test several numerical experiments for the benchmark examples, including (1) the driven circular cavity, (2) the circular cavity with eccentric rotating cylinder, (3) the square cavity with traction boundary conditions and (4) the uniform flow past a sphere. The results compare very well with the solutions obtained by analytical or other numerical methods such as finite element method (FEM). It is found that the meshless MFS will give a simpler and more efficient and accurate solutions to the Stokes flows investigated in this study.
This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.