We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 7 is dedicated to regularized regression methods, which – by penalizing models that are too complex – are capable of providing a reasonable tradeoff between bias and variance. Ridge regression implements L2 regularization, which results in more generalizable models, but does not perform any feature selection. L1 penalty used by the lasso allows, however, for simultaneous regularization and feature selection. The elastic net algorithm combines the two approaches by applying both L1 and L2 penalties, which allows for solutions combining the advantages of both ridge regression and the lasso. The chapter concludes by discussing a general class of Lq-regularized least squares optimization problems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.