We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the growth of the convex viscosity solution of the Monge–Ampère equation $\det D^2u=1$ outside a bounded domain of the upper half space. We show that if u is a convex quadratic polynomial on the boundary $\{x_n=0\}$ and there exists some $\varepsilon>0$ such that $u=O(|x|^{3-\varepsilon })$ at infinity, then $u=O(|x|^2)$ at infinity. As an application, we improve the asymptotic result at infinity for viscosity solutions of Monge–Ampère equations in half spaces of Jia, Li and Li [‘Asymptotic behavior at infinity of solutions of Monge–Ampère equations in half spaces’, J. Differential Equations269(1) (2020), 326–348].
Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.
In this article, we give an analytic construction of ALF hyperkähler metrics on smooth deformations of the Kleinian singularity $\mathbb{C}^{2}/{\mathcal{D}}_{k}$, with ${\mathcal{D}}_{k}$ the binary dihedral group of order $4k$, $k\geqslant 2$. More precisely, we start from the ALE hyperkähler metrics constructed on these spaces by Kronheimer, and use analytic methods, e.g. resolution of a Monge–Ampère equation, to produce ALF hyperkähler metrics with the same associated Kähler classes.