We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bentonite is often proposed as an engineered-buffer material in high-level radionuclide waste-management systems. For effective design of the barrier that will provide protection over the long time periods required, the physical/thermal/chemical processes taking place in the barrier material must be understood thoroughly. These processes, which interact, include the flow of water and gas, the flow of heat, and the transport and reaction of chemical constituents. The purpose of this study was to better understand the processes that occurred in a small-scale experiment within a confined bentonite space. A conceptual and mathematical model (FADES-CHEM) was built in order to simulate the results of an experiment conducted in 2000, and thereby to gain a better understanding of the controlling processes. In that experiment, a block of compacted bentonite was placed in an air-tight cell and subjected, for 6 months, to simultaneous heating and hydration from opposite sides. The bentonite block was then sliced into five sections each of which was then analyzed in order to obtain a series of physicochemical parameters illustrating the changes that had occurred. Before modeling, the chemical composition of the bentonite pore waters was restored in order to account for different processes such as gas outgassing and cell cooling. Modeling indicated that gas-pressure build up was a relevant process when computing the saturation of bentonite, and the computations in the present study suggested that evaporation/condensation processes played a crucial role in the final distribution of the water content. Gas pressure and evaporation/ condensation also affected the geochemical system, and the numerical model developed gives results that were consistent with the experimental values and trends observed. The model reproduced the results obtained and enable use at the repository scale and over longer time frames, provided that adequate data are available.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: The primary observables of the Global Positioning System (GPS) ground tracking sites for geodynamics are the Earth’s surface motions, and their geophysical interpretation is based on the numerical models of various tectonic processes. The key issues for geophysical interpretation of the GPS observations are adequate mechanical models of brittle and ductile rock behaviour used to predict surface motions related to various tectonic processes, and the corresponding inversion techniques which allow separation of the processes, and evaluation of their parameters. For large-scale heterogeneous processes, the inversion of the GPS observations requires regularisation because it implies evaluation of some complicated distributed underground motions from their discrete manifestation at the surface. One of the fastest growing applications of the satellite geodetic observations is investigation of the seismotectonic deformation associated with great earthquakes worldwide at all stages of the seismic cycle – inter-seismic, co-seismic, post-seismic. The inversion techniques based on dislocation models in elastic or viscoelastic medium is one of the approaches that may be widely used for GPS-based studies of various seismotectonic deformations.
Building upon regional scale discussions in Chapter 2, this chapter discusses the interactions between barrier beaches and tidal inlets at a local scale from the perspective of inlet stability, and mechanisms and pathways of sediment bypassing across tidal inlets. Inlet stability can be significantly influenced by local geologic conditions such as outcropping of erosion resistant bedrocks or stiff mud, in addition to hydraulic conditions as controlled by tidal prism. Local geology such as shoreline exposure of bedrocks and stiff mud can also influence beach morphodynamics by controlling its planform. However, tidal inlets and their ebb tidal deltas impose the major interruption to the continuity of longshore sand transport. How sand moving along the beach can reach from one barrier island to another constitutes the main issue for beach–inlet interaction, and subsequently the erosion or accretion of barrier beaches. Several conceptual models have been developed and are discussed in this chapter. The rapidly improving numerical modeling provides a promising tool to quantify sediment bypassing and is introduced here.
Glacier phototroph blooms on the surfaces of ice sheets and glaciers cause albedo reduction, leading to increased melting rates. We observed seasonal changes in the abundance of phototrophs on the Qaanaaq Ice Cap in northwestern Greenland from June to August 2014, and reproduced these changes using numerical and empirical models. The phototroph community on the ice surface mainly consisted of the glacier alga Ancylonema nordenskioldii and the cyanobacterium Phormidesmis priestleyi. The glacier alga appeared on the ice surface in late June, after which its abundance increased exponentially throughout the melting period. A logistic growth model designed for snow algal growth reproduced the measured exponential increases, suggesting that growth could be explained using the model as a function of the ice melting duration. Cyanobacteria appeared and their abundance increased in late July but did not change exponentially thereafter. The abundance of cyanobacteria was explained with an empirical model expressed as a function of the amount of mineral dust on the bare ice surface. Our numerical and empirical models for reproducing glacier algae and cyanobacteria could be useful for quantifying the albedo reduction caused by their growth and the melt rates of the Greenland ice sheet and glaciers in the future.
Global warming and the associated glacier retreat recently revealed the entrance to an ice–rock tunnel, at an altitude of ~3600 m a.s.l., in the uppermost portion of the Forni Glacier in the Central Italian Alps. The tunnel served as an entrance to an Austro-Hungarian cableway station excavated in the rocks during the Great War just behind the frontline. A comprehensive geophysical survey, based on seismic and ground-penetrating radar profiling, was then undertaken to map other possible World War I (WWI) remains still embedded in the ice. The ice–rock interface was reconstructed over the entire saddle and in the uppermost portion of the glacier. A prominent linear reflector was surprisingly similar to the common response of buried pipes. The reflector orientation, almost longitudinal to the slope, does not seem to be compatible with a glacial conduit or with other natural features. Numerical simulations of a series of possible targets constrained interpretation to a partly water-filled rounded shape cavity. The presence of a preserved WWI tunnel connecting Mount Vioz and Punta Linke could be considered a realistic hypothesis. The Forni glacier could be still considered polythermal and comprised of cold ice without basal sliding in its top portion.
Colluvial sediments of talus relicts (“talus flatirons”) around mesas preserve a record that sheds light on slope-forming processes at temporal scales > 103 yr. The sedimentology and soil stratigraphy of two groups of talus flatirons in the northeastern hyperarid Negev desert reveal four deposition events in the younger talus and at least two in the older one. Numerical modeling of high-resolution 10Be depth profiles suggests that these taluses were deposited during the middle Pleistocene; the younger talus group first depositional event occurred at 551 − 142+ 80 ka and its abandonment occurred at 270 − 38+ 17 ka. The abandonment of the older talus group and stabilization of its surface occurred at 497 − 114+ 176 ka. These ages indicate that the development of the studied talus sequence is not specifically associated with Pleistocene glacial–interglacial cycles. The 10Be modeled concentrations indicate significant differences in the average inheritance of talus flatirons of different groups. These differences can be attributed to variability in the transport distance and duration of gravel exposure during transport but could also reflect some temporal variability in cliff retreat. Our results also demonstrate that talus slopes in hyperarid areas, despite their steepness, can store sediment for long periods (~ 500 ka) and thus constitute a valuable archive.
The evolution of non-equilibrium plasma channel created in xenon by powerful KrF-femtosecond laser pulse is studied. It is demonstrated that such a plasma channel can be used as a waveguide for both transportation and amplification of the microwave radiation. The specific features of such a plasma waveguide are studied on the basis of the self-consistent solution of the kinetic Boltzmann equation for the electron energy distribution function in different spatial points of the gas media and the wave equation in slow-varying amplitude approximation for the microwave radiation guided and amplified in the channel.
Hydrogeological research in coastal areas has gained considerable attention over the last decades due to increasing stresses on fresh groundwater resources. Fundamental groundwater flow and solute transport analyses remain essential for a concise understanding of the governing processes that lead to salinisation of fresh groundwater resources. However, the challenge of modern research is the application and quantification of these processes in real world cases. In this context, deltaic areas are amongst the most difficult study areas as they often have a complex groundwater salinity distribution. The Wadden Sea area in the northern part of the Netherlands is an example of such an area.
We quantified salt water intrusion and salinisation of groundwater flow systems in two representative case studies in the Wadden Sea area, using the density dependent groundwater flow and transport code M0CDENS3D. The results indicate that sea-level rise and autonomous processes will cause severe salinisation in the future, especially in the low polder areas close to the sea. In addition, we show that enhanced land subsidence due to salt exploitation accelerates this process. Salinisation can be mitigated to some extent by raising surface water levels in polders and by creating saline groundwater collection areas that maintain a low controlled water level.
The problem of transformation of quasimonochromatic wavetrains of surface gravity waveswith narrow spatial-temporal spectra on the bottom shelf is considered in the linearapproximation. By means of numerical modeling, the transmission and reflectioncoefficients are determined as functions of the depth ratio and wave number (frequency) ofan incident wave. The approximation formulae are proposed for the coefficients of wavetransformation. The characteristic features of these formulae are analyzed. It is shownthat the numerical results agree quite satisfactorily with the proposed approximationformulae.
This study shows a new way to implement terrain-following σ-coordinate in a numerical model, which does not lead to the well-known “pressure gradient force (PGF)” problem. First, the causes of the PGF problem are analyzed with existing methods that are categorized into two different types based on the causes. Then, the new method that bypasses the PGF problem all together is proposed. By comparing these three methods and analyzing the expression of the scalar gradient in a curvilinear coordinate system, this study finds out that only when using the covariant scalar equations of σ-coordinate will the PGF computational form have one term in each momentum component equation, thereby avoiding the PGF problem completely. A convenient way of implementing the covariant scalar equations of σ-coordinate in a numerical atmospheric model is illustrated, which is to set corresponding parameters in the scalar equations of the Cartesian coordinate. Finally, two idealized experiments manifest that the PGF calculated with the new method is more accurate than using the classic one. This method can be used for oceanic models as well, and needs to be tested in both the atmospheric and oceanic models.
The studies carried out on the Adour estuary on the migration of glass eels lead to the characterisation of their swimming behavior. Individuals migrate passively with the flood tide current behind the dynamic tide front, and their movements into the water column are linked to the surrounding luminosity and water turbidity. A numerical model was built from observations gathered on glass eel densities during scientific surveys. It uses the outputs of a hydrodynamic model accounting for the variations in the river flow and tide coefficient. It allows the simulation
of the displacement of a particle in the longitudinal axis of the estuary. The variation of the vertical movements through the water column takes into account the cloud cover, the moon phases, the alternation of days and nights and the water turbidity. The results allow displaying the migration speed of groups of glass eels entering the Adour estuary. These simulations are validated by the comparison with in situ observations and the outputs of the behavioral model make possible, on the one hand, to simulate the migration speed of glass eels according to hydrological data and, on the other hand, to define the environmental conditions that stop or slow down their displacement into the estuary.
A numerical and experimental analysis of the optical beam deflection system used to monitor microcantilevers subjected to simultaneous deflection and twisting such as in lateral or frictional force microscopy was performed. This study focused on two optical beam deflection orientations where in the first case the optical beam and the detector are at a right angle to the length of the cantilever and the second case, which is the more standard orientation, the optical beam is parallel to the length of the lever. This study finds that it is possible to model the twist and the deflection separately and treat each motion independently. Simulations have shown that the above-mentioned systems are equivalent in accuracy and sensitivity for monitoring the simultaneous twist and deflection of cantilevers.
Afin de démontrer la faisabilité du stockage de l'hydrogène grâce à l'hydrure de magnésium activé, un réservoir de 250 cm3 contenant 120 g d'hydrure a été réalisé. Le magnésium réagit avec l'hydrogène de façon réversible et absorbe jusqu'à 7,6 % massique. Le fonctionnement de ce réservoir fait l'objet de cette étude. Le logiciel Fluent a été utilisé pour le modéliser numériquement. Le code s'appuie sur des conditions aux limites et certaines données thermiques déduites de l'expérience. La pression est considérée comme homogène dans le réservoir. Les simulations sont en accord avec l'expérience dans les domaines de température et de pression favorables à une charge ou une décharge du réservoir rapide.
Neural network (NN)-based constitutive models have been used
increasingly to capture soil constitutive response. When combined with the
self-learning simulation (SelfSim) inverse analysis framework, NN models
can be used to extract soil behavior when given field measurements of
boundary deformations and loads. However, the data sets used to train and
repeatedly retrain the NN models are large, and training times, especially
when used in SelfSim, are long. A diverse set of stress–strain data
is extracted from a simulated braced excavation problem to train a
NN-based constitutive model. Several methods for reducing the data set
size are proposed and evaluated. Each of these methods selectively removes
training data so that the smallest amount of data is used to train the NN.
The Gaussian point method removes data based on its position in each
finite element in the model. The lattice method removes data so that all
remaining points are evenly spaced in stress space. Finally, the loading
path method compares the stress–strain history of each Gaussian
point and removes points with similar loading histories. Each of these
methods shows that a large amount of the training data (up to 94%) can be
removed without adversely affecting the performance of the NN model, with
the loading path method showing the best and most consistent performance.
Model training times are reduced by a factor of 20. The performance of the
loading path method is also demonstrated using stress–strain data
extracted from a simulated laboratory triaxial compression test with
frictional ends.
Cet article porte sur la modélisation des culasses aluminium de moteurs diesel HDI en vue de prédire leur tenue en fatiguepolycyclique. Celles-ci, avant d'être frettées, serrées sur le bloc moteur et utilisées en service, subissent un traitement thermique (trempe et revenu) afin d'améliorer leurs propriétés mécaniques. Lors de ce procédé d'importantescontraintes résiduelles sont générées. Leur modélisation est nécessaire pour obtenir des résultats numériques prédictifs. Une première difficulté vient de la modélisation des échanges thermiques. Pour cela, le choix d'une fonction analytique simple pour le coefficient d'échange H = f(Tparoi), suivi de l'optimisation des différents paramètres, a permis demodéliser les courbes de refroidissement. Une fois l'histoire thermique de la culasse modélisée, un calcul mécanique élastoplastique permet dedéterminer les contraintes résiduelles. Celles-ci, fortement de traction dans la zone à risque, sont défavorables à la tenue à la fatigue polycyclique de la pièce dans le cas de la trempe à l'eau. La prise en compte de l'état résiduel de fin de traitement thermique dans la filière de dimensionnement à la fatigue polycyclique permet alors de caractériser les zones à risque expérimentalement observées.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.