We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A union ultrafilter is an ultrafilter over the finite subsets of ω that has a base of sets of the form ${\text{FU}}\left( X \right)$, where X is an infinite pairwise disjoint family and ${\text{FU}}(X) = \left\{ {\bigcup {F|F} \in [X]^{ < \omega } \setminus \{ \emptyset \} } \right\}$. The existence of these ultrafilters is not provable from the $ZFC$ axioms, but is known to follow from the assumption that ${\text{cov}}\left( \mathcal{M} \right) = \mathfrak{c}$. In this article we obtain various models of $ZFC$ that satisfy the existence of union ultrafilters while at the same time ${\text{cov}}\left( \mathcal{M} \right) = \mathfrak{c}$.
Woodin and Vopěnka cardinals are established notions in the large cardinal hierarchy and it is known that Vopěnka cardinals are the Woodin analogue for supercompactness. Here we give the definition of Woodin for strong compactness cardinals, the Woodinised version of strong compactness, and we prove an analogue of Magidor’s identity crisis theorem for the first strongly compact cardinal.
We prove from the existence of a Mahlo cardinal the consistency of the statement that 2ω = ω3 holds and every stationary subset of ${\omega _2}\mathop \cap \nolimits {\rm{cof}}\left( \omega \right)$ reflects to an ordinal less than ω2 with cofinality ω1.
Supercompact extender based forcings are used to construct models with HOD cardinal structure different from those of V. In particular, a model where all regular uncountable cardinals are measurable in HOD is constructed.
Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at ${\kappa ^{ + + }}$, assuming that $\kappa = {\kappa ^{ < \kappa }}$ and there is a weakly compact cardinal above κ.
If in addition κ is supercompact then we can force κ to be ${\aleph _\omega }$ in the extension. The proofs combine the techniques of adding and then destroying a nonreflecting stationary set or a ${\kappa ^{ + + }}$-Souslin tree, variants of Mitchell’s forcing to obtain the tree property, together with the Prikry-collapse poset for turning a large cardinal into ${\aleph _\omega }$.
A narrow system is a combinatorial object introduced by Magidor and Shelah in connection with work on the tree property at successors of singular cardinals. In analogy to the tree property, a cardinal κ satisfies the narrow system property if every narrow system of height κ has a cofinal branch. In this paper, we study connections between the narrow system property, square principles, and forcing axioms. We prove, assuming large cardinals, both that it is consistent that ℵω+1 satisfies the narrow system property and $\square _{\aleph _\omega , < \aleph _\omega } $ holds and that it is consistent that every regular cardinal satisfies the narrow system property. We introduce natural strengthenings of classical square principles and show how they can be used to produce narrow systems with no cofinal branch. Finally, we show that the Proper Forcing Axiom implies that every narrow system of countable width has a cofinal branch but is consistent with the existence of a narrow system of width ω1 with no cofinal branch.
This article is devoted to the interplay between forcing with fusion and combinatorial covering properties. We illustrate this interplay by proving that in the Laver model for the consistency of the Borel’s conjecture, the product of any two metrizable spaces with the Hurewicz property has the Menger property.
From large cardinals we show the consistency of normal, fine, κ-complete λ-dense ideals on ${{\cal P}_\kappa }\left( \lambda \right)$ for successor κ. We explore the interplay between dense ideals, cardinal arithmetic, and squares, answering some open questions of Foreman.
To each filter ℱ on ω, a certain linear subalgebra A(ℱ) of Rω, the countable product of lines, is assigned. This algebra is shown to have many interesting topological properties, depending on the properties of the filter ℱ. For example, if ℱ is a free ultrafilter, then A(ℱ) is a Baire subalgebra of ℱω for which the game OF introduced by Tkachenko is undetermined (this resolves a problem of Hernández, Robbie and Tkachenko); and if ℱ1 and ℱ2 are two free filters on ω that are not near coherent (such filters exist under Martin's Axiom), then A (ℱ1) and A(ℱ2) are two o-bounded and OF-undetermined subalgebras of ℱω whose product A(ℱ1) × A(ℱ2) is OF-determined and not o-bounded (this resolves a problem of Tkachenko). It is also shown that the statement that the product of two o-bounded subrings of ℱω is o-bounded is equivalent to the set-theoretic principle NCF (Near Coherence of Filters); this suggests that Tkachenko's question on the productivity of the class of o-bounded topological groups may be undecidable in ZFC.
If S, T are stationary subsets of a regular uncountable cardinal κ, we say that S reflects fully in T, S < T, if for almost all α ∈ T (except a nonstationary set) S ∩ α stationary in α. This relation is known to be a well-founded partial ordering. We say that a given poset P is realized by the reflection ordering if there is a maximal antichain 〈Xp: p ∈ P〉 of stationary subsets of Reg(κ) so that
We prove that if , and P is an arbitrary well-founded poset of cardinality ≤ κ+ then there is a generic extension where P is realized by the reflection ordering on κ.
A stationary subset S of a regular uncountable cardinal κreflects fully at regular cardinals if for every stationary set T ⊆ κ of higher order consisting of regular cardinals there exists an α Є T such that S ∩ α is a stationary subset of α. Full Reflection states that every stationary set reflects fully at regular cardinals. We will prove that under a slightly weaker assumption than κ having the Mitchell order κ++ it is consistent that Full Reflection holds at every λ ≤ κ and κ is measurable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.