Changes in the amount and metabolism of adipose tissue (AT) occur in underfed ruminants, and are amplified during lactation, or in fat animals. The fat depot of the tail of some ovine breeds seems to play a particular role in adaptation to undernutrition; this role could be linked to its smaller adipocytes and high sensitivity to the lipolytic effect of catecholamines. Glucocorticoids and growth hormone probably interact to induce teleophoretic changes in the AT responses to adenosine and catecholamines during lactation. Fat mobilization in dry ewes is related both to body fatness and to energy balance. The in vivo β-adrenergic lipolytic potential is primarily related to energy balance, whereas basal postprandial plasma non-esterified fatty acids (NEFA) are related to body fatness, and preprandial plasma NEFA is the best predictor of the actual body lipid loss. Several mechanisms seem to be aimed at avoiding excessive fat mobilization and/or insuring a return to the body fatness homeostatic set point. As well as providing the underfed animal with fatty acids as oxidative fuels, AT acts as an endocrine gland. The yield of leptin by ruminant AT is positively related to body fatness, decreased by underfeeding, β-adrenergic stimulation and short day length, and increased by insulin and glucocorticoids. This finding suggests that the leptin chronic (or acute) decrease in lean (or underfed respectively) ruminants is, as in rodents, a signal for endocrine, metabolic and behavioural adaptations aimed at restoring homeostasis.