We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A positive-definite diagonal quadratic form $a_{1}x_{1}^{2}+\cdots +a_{n}x_{n}^{2}\;(a_{1},\ldots ,a_{n}\in \mathbb{N})$ is said to be prime-universal if it is not universal and for every prime $p$ there are integers $x_{1},\ldots ,x_{n}$ such that $a_{1}x_{1}^{2}+\cdots +a_{n}x_{n}^{2}=p$. We determine all possible prime-universal ternary quadratic forms $ax^{2}+by^{2}+cz^{2}$ and all possible prime-universal quaternary quadratic forms $ax^{2}+by^{2}+cz^{2}+dw^{2}$. The prime-universal ternary forms are completely determined. The prime-universal quaternary forms are determined subject to the validity of two conjectures. We make no use of a result of Bhargava concerning quadratic forms representing primes which is stated but not proved in the literature.
One of the open questions in the study of Carmichael numbers is whether, for a given $R\geq 3$, there exist infinitely many Carmichael numbers with exactly $R$ prime factors. Chernick [‘On Fermat’s simple theorem’, Bull. Amer. Math. Soc.45 (1935), 269–274] proved that Dickson’s $k$-tuple conjecture would imply a positive result for all such $R$. Wright [‘Factors of Carmichael numbers and a weak $k$-tuples conjecture’, J. Aust. Math. Soc.100(3) (2016), 421–429] showed that a weakened version of Dickson’s conjecture would imply that there are an infinitude of $R$ for which there are infinitely many such Carmichael numbers. In this paper, we improve on our 2016 result by weakening the required conjecture even further.
A lattice walk with all steps having the same length $d$ is called a $d$-walk. Denote by ${\mathcal{T}}_{d}$ the terminal set, that is, the set of all lattice points that can be reached from the origin by means of a $d$-walk. We examine some geometric and algebraic properties of the terminal set. After observing that $({\mathcal{T}}_{d},+)$ is a normal subgroup of the group $(\mathbb{Z}^{N},+)$, we ask questions about the quotient group $\mathbb{Z}^{N}/{\mathcal{T}}_{d}$ and give the number of elements of $\mathbb{Z}^{2}/{\mathcal{T}}_{d}$ in terms of $d$. To establish this result, we use several consequences of Fermat’s theorem about representations of prime numbers of the form $4k+1$ as the sum of two squares. One of the consequences is the fact, observed by Sierpiński, that every natural power of such a prime number has exactly one relatively prime representation. We provide explicit formulas for the relatively prime integers in this representation.
We improve recent results of Bourgain and Shparlinski to show that, for almost all primes $p$, there is a multiple $mp$ that can be written in binary as
with $k=6$ (corresponding to Hamming weight seven). We also prove that there are infinitely many primes $p$ with a multiplicative subgroup $A=\langle g\rangle \subset \mathbb{F}_{p}^{\ast }$, for some $g\in \{2,3,5\}$, of size $|A|\gg p/(\log p)^{3}$, where the sum–product set $A\cdot A+A\cdot A$ does not cover $\mathbb{F}_{p}$ completely.
Let $\varphi(\cdot)$ be the Euler function and let $\sigma(\cdot)$ be the sum-of-divisors function. In this note, we bound the number of positive integers $n\le x$ with the property that $s(n)=\sigma(n)-n$ divides $\varphi(n)$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.