We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The expansion of soybean cultivation in South America has created substantial economic prosperity but has also raised a series of unsustainable land-use issues. Considering the telecoupling system (a system of socio-ecological interactions between distant places) between South America and its soybean trade partners, transnational governance could play an important role in addressing these issues. To achieve effective governance of this specific telecoupling system, this study applies a polycentric approach to improve the existing transnational governance and identify more suitable governance arrangements. This study first explores the telecoupling system and the existing transnational governance system of soybean land use in South America. It then compares the existing governance system with the polycentric approach to examine the gaps between them. Based on these analyses, suggestions for improving the governance system are provided, including increasing the involvement of major governance centres, improving public-private partnerships, and establishing a knowledge-sharing platform.
Prevented planting payments reimburse crop producers for losses from not being able to plant. These payments provide critical protection to producers; however, these payments, which are determined using a nationwide, crop-specific coverage factor, have been questioned to induce moral hazard. Depending on the region and crop insurance coverage, payments from this provision exceed producers’ losses. This paper estimates the prevented planting coverage factor by coverage level and region that would equitably reimburse corn and soybean producers for their losses. We find the prevented planting coverage factor has significant variation across coverage levels and location within our study region. The prevented planting coverage factor was found to decline as the policy coverage level increases. The further north in the study region the higher the coverage factor, likely due to increased land rent expenses. The results provide a unique perspective of how these coverage factors would vary to equitably compensate producers for losses, which addresses the moral hazard concerns with prevented planting.
Highly weathered soils of the humid tropics generally provide a poor mineral reserve of potassium (K), but evidence has been found which indicates that even in such soils non-exchangeable forms of K can be made plant available and this warrants further investigation. The objective of this study was, therefore, to determine the extent to which K can be released from poorly available reserves over a long period of time. The focus was on an Oxisol in southern Brazil cultivated for 32 years with a rotation of soybeans (Glycine max L.), maize (Zea mays L.), wheat (Triticum aestivum L.), and oats (Avena strigosa L.) with and without K fertilization. Mineral sources of K were identified by X-ray diffraction and by sequential chemical extraction from the clay fraction. The amounts of K-bearing mineral species and the amounts of total and plant-available K were quantified, then the effects of the long-term K-fertilization regime on these values were evaluated. The clay fraction was dominated by hematite, gibbsite, and phyllosilicates such as kaolinite. These minerals were unaffected by the K deprivation in the cropping systems, but in the clay fraction the absence of K fertilization for 32 years reduced the structural order of the 2:1 phyllosilicates associated with K reserves. This effect was most prominent in the root zone of the soil. Deprivation of K for more than three decades decreased the crystallinity of 2:1 phyllosilicates, which could be better evaluated from XRD patterns after the removal of kaolinite and Fe (oxyhydr)oxides. The K-free cultivation reduced the amounts of total soil K by increasing the depletion of K from pools that typically are poorly accessible to plants.
U.S. soybean farmers are currently grappling with dicamba herbicide drift. Using a network diffusion framework that accommodates key features of soybean farmer networks, we estimate the damages incurred from dicamba drift across different regions. Under our baseline assumptions, we estimate an average yield loss of 3% and predict sizable levels of forced switching to dicamba-resistant seed in response to drift. The relative importance of drift on damage and seed choice holds across a range of economic and network assumptions. In the absence of policy, this damage may cause regional adoption rates of dicamba-resistant soybean seed to increase.
Soy is a key food in human nutrition. It is widely used in eastern traditional cuisine and it has recently diffused among self-conscious and vegetarian diets. The success of soy mainly depends on versatility and supposed healthy properties of soy foods and soy components. Meanwhile, the possible influence on endocrine system, in particular by isoflavones, raised concerns among some researchers. The present paper aims to conduct a review of available data on the effect of soy, soy foods and soy components on women's fertility and related outcomes. Eleven interventional studies, eleven observational studies and one meta-analysis have been selected from the results of queries. A weak, not clinically relevant effect has been highlighted on cycle length and hormonal status. However, a suggestive positive influence has been shown among women with fertility issues and during assisted reproductive technologies. Overall, soy and soy components consumption do not seem to perturb healthy women's fertility and can have a favourable effect among subjects seeking pregnancy. However, because of the paucity of studies exploring the impact of soy intake on women's fertility, as well as the limited population sample size, the frequently incomplete specimens’ collection to investigate all cycle phases and the insufficient characterisation of participants, the evidence is suggestive and it needs further in-depth research taking into account all these aspects.
The growing prevalence of clean energy raises the question of possible associated externalities. This article studies the effects of nuclear power plant development (and, as a result, the increased amount of water in the atmosphere from evaporative cooling systems) on nearby crop yields and finds that an average nuclear power plant increases local soybean yields by 2 and corn yields by 1 percent. Considering the low elasticity of demand for these crops, the yield increases translate to annual net benefits of $229 million (2020 US dollars) – $317 million in losses to farmers and $546 million in benefits to consumers.
In the past 50 years, South America has emerged as the dominant world producer of soybeans, a crop of no significance in the region before the middle of the 20th century. As of the crop year 2019/2020, Brazil and Argentina produced 176 million tons which is over half of all world production and these two countries alone will also account for 57 per cent of all Soybeans exported in international trade. How this new agricultural product evolved in these two principal regional producers is the aim of this study. Here we attempt to examine the historical evolution of soybean production in Brazil and Argentina and try to show the unique patterns of production in each of the two crucial states.
This article focuses on the 1935 discovery of what is now believed to be a selenium deficiency disorder in the Japanese client state of Manchukuo. The epicenter of this disease had served as pasture for Oirat Mongols until the late nineteenth century. Opening up the land for reclamation by Chinese migrants put greater pressure on each acre to produce food. With a limited supply of selenium in the soil, the intake of this mineral by crops decreased over time, especially under the extractive conditions of the soybean industry during the Japanese occupation. Japanese theories on climate and hygiene made legible the consequences of transforming this nomadic borderland into an agrarian heartland on colonized bodies. By bringing attention to the understudied Mongol territories in Manchukuo, this essay goes beyond environmental histories bound by the nation-state to reveal the corporeal costs of settler colonialism and ecological imperialism.
Export tax reform in Argentina could improve its competitiveness in China’s soybean market, displacing exports from competing countries like Brazil and the United States. We examined the factors that determine China’s demand for imported soybean products and how export taxes could affect exporting countries. Using import demand and vector autoregression estimates, we conducted simulations of China’s import demand assuming the elimination of export taxes in Argentina. Results indicated that Argentine soybean products could realize gains in the Chinese market, but only in the short run. Projected import demand changes in the long run were insignificant for all exporting countries.
Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)acetamide], alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] were applied in 280 L of water/ha to plots covered with 0 to 6720 kg/ha of wheat (Triticum aestivum L.) straw. At straw levels of 1120 kg/ha or greater, 50% or less of the applied herbicides were received by the soil surface before irrigation. Sprinkle irrigation (1.3 cm) washed 15 to 20% of the originally applied herbicide into the soil regardless of straw level. More metolachlor was retained on the straw than acetochlor or alachlor. Analysis of the wheat straw indicated that little water-extractable herbicide remained for all herbicides. Initial herbicidal activity on grain sorghum [Sorghum bicolor (L.) Moench.] was reduced by the presence of wheat straw at the time of application, with acetochlor being least affected and alachlor most affected. Ten days after treatment, less than 10% of the original alachlor and acetochlor remained in the soil. When planted at this time, grain sorghum response was inversely related to the amount of straw mulch that was originally present. Metolachlor residues in the soil on day 10 were 11 to 26% of that on day 0 and there was comparably less reduction in activity on grain sorghum.
The interaction of reduced rates of bentazon, chlorimuron, imazaquin, and imazethapyr with cultivation for broadleaf weed control in soybeans was investigated in field experiments conducted at three sites in Missouri in 1987 and 1988. Single reduced-rate herbicide applications provided soybean yields equal to full rates although visual weed control was slightly lower. Sequential applications of all four herbicides at reduced rates provided weed control and soybean yields equal to full-rate applications. The number of velvetleaf plants m−2 and seeds plant−1 were not influenced by herbicide, herbicide rate, or application timing. Cultivation improved weed control and soybean yield and decreased late-season weed populations and seed production.
Field experiments to compare the loss of oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) from straw-mulched and nonmulched soils indicated that oryzalin disappeared more rapidly in soils covered by straw in 1980 and 1981 but not in 1982. It appeared that greater rainfall in 1982 was responsible for this difference. Straw mulch on the soil at the time of application reduced the amount of oryzalin reaching the soil surface after subsequent rains or irrigation. Straw levels of 2250 or 4500 kg/ha, when present at the time of treatment, reduced oryzalin concentration in the soil by approximately 15 or 43%, respectively, following 1.3 cm of water applied by sprinkle irrigation. Increasing the straw levels above 4500 kg/ha did not significantly affect the amount of oryzalin detected in the soil beneath the straw mulch.
The survival of two Rhizobium japonicum strains was determined in soils treated with 13 herbicides used in soybeans [Glycine max (L.) Merr.]. Survival in soils treated with concentrations equivalent to or 10-fold greater than those from field applications at recommended rates was compared to survival in untreated soil under controlled temperature and moisture conditions. Nine of the herbicides had transitory or no effects, regardless of rate. Acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid}, bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide], fluchloralin [N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)benzenamine], and dinoseb [2-(1-methylpropyl)-4,6-dinitrophenol] consistently reduced survival of one or both strains at rates 10-fold greater than recommended. At rates of application equivalent to suggested field use rates, effects on survival were reduced or eliminated. Reductions in survival attributable to herbicides were in some cases comparable to those obtained by a weekly wetting and drying of the soil, indicating that herbicide effects on R. japonicum may be equivalent in magnitude to effects due to environmental stress. The herbicides were not sufficiently toxic to reduce R. japonicum populations in soil to levels that would be likely to affect nodulation.
A field experiment was conducted in 1986 and 1987 to determine the minimum effective rate (MER)3 of imazaquin and chlorimuron applied postemergence to common cocklebur. MER is defined as the quantity required to provide at least 90% control. Based on probit regression analyses, the mean calculated MERs of imazaquin and chlorimuron for 2-leaf common cocklebur were 27.5 and 4.5 g ai/ha, respectively. Under optimum growing conditions, the calculated MERs of imazaquin and chlorimuron for 6-leaf common cocklebur were 34 and 4.6 g/ha, respectively. When applied to 6-leaf plants under slight moisture stress, the calculated MERs for imazaquin and chlorimuron were 54 and 17.4 g/ha, respectively.
Mefluidide {N-[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl] amino] phenyl] acetamide}+bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] at 0.14 + 0.84 kg ai/ha was the most injurious of five herbicide treatments applied once to one- to two-leaf red rice (Oryza sativa L. ♯3 ORYSA). The most injurious treatment to five-to six-leaf red rice was DPX Y6202 {ethyl [2-[4-[6-chloro-2-quinoxalinyl]oxy]phenoxy] propionate} at 0.56 kg ai/ha. Two applications, regardless of red rice growth stage, of all treatments except fluazifop {[±]-butyl-2-[4-[[5-trifluoromethyl]-2-pyridinyl] oxy] phenoxy] propanoate} resulted in 86 to 99% injury.
The willingness to plant identity preserved (IP) crops was examined using Mississippi soybean producers as an example. A contingent valuation framework was used to assess the impacts of offered premiums on a producer's probability of planting IP soybeans. Findings suggest that offered premiums significantly affect planting decisions. In addition, desire to learn more about IP production was found to increase the probability of planting, suggesting that desire to learn leads to experimentation. Finally, prior knowledge or experience planting IP crops significantly decreased the probability of planting.
Field experiments were conducted with the recirculating sprayer (RCS) at Lincoln, Nebraska from 1974 through 1978. Different spray pressures, spray nozzles, and spray volumes with the RCS showed no significant differences in shattercane [Sorghum bicolor (L.) Moench] control or soybean [Glycine max (L.) Merr.] injury when herbicides were applied at three stages of weed growth. When shattercane was treated in a grain sorghum [Sorghum bicolor (L.) Moench] field, poor weed control and excessive crop injury occurred during treatment at the early growth stage as compared with treatments applied 2 weeks later. The final treatment date gave selective weed control in grain sorghum, but many of the shattercane heads had already developed viable seed. A weed-to-crop height differential of at least 45 cm resulted in maximum weed control with minimum crop injury. Common milkweed (Asclepias syriaca L.) control in soybeans varied considerably, but treatments giving over 80% control were glyphosate [N-(phosphonomethyl)glycine] at 1.1 to 4.5 kg/ha applied through the RCS. Other herbicides were less effective. Volunteer corn (Zea mays L.) was controlled selectively at 75 to 100% in soybeans with glyphosate or paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) when applied through the RCS. Shattercane was controlled 95 to 100% in soybeans with glyphosate at 3.4 kg/ha. Unless spray drift and splash can be prevented when using the RCS, glyphosate and paraquat will not give selective control when applied to weeds growing in grain sorghum. Glyphosate applied through the RCS, however, can be a selective method of controlling weed escapes in soybeans because soybeans are not as sensitive to glyphosate as is sorghum.
Foliar applications of 14C-bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] with PPA (polymeric polyhydroxy acid) at 1 or 2% (v/v) or nonoxynol (9.5 POE) [α-(p-nonylpheny1)-ω-hydroxypoly(oxyethylene)] at 1% (v/v) or mixtures of PPA and nonoxynol did not increase absorption or translocation of 14C-bentazon in soybeans [Glycine max (L.) Merr. ‘Lee 74′] or common cocklebur (Xanthium strumarium L. # XANST). PPA alone at 1 to 2% (v/v) did not significantly affect absorption or translocation of 14C-bentazon in smooth pigweed (Amaranthus hybridus L. # AMACH), but PPA with nonoxynol significantly increased translocation out of the treated leaf. Both PPA and nonoxynol decreased absorption and movement of 14C-MSMA [monosodium salt of methylarsonic acid] out of the treated leaf of johnsongrass [Sorghum halepense (L.) Pers. # SORHA]. In greenhouse research, PPA at 0.25 and 0.5% (v/v) did not increase the level of control of common cocklebur obtained following postemergence applications of bentazon at 0.24 and 0.48 kg ai/ha. Similarly, PPA at 0.25 and 0.50% (v/v) did not increase the toxicity of MSMA at 0.3 and 0.6 kg ai/ha to either johnsongrass or common cocklebur.
Past research shows that prices move in response to World Agricultural Supply and Demand Estimates (WASDE) reports immediately prior to and after a report. This research develops trading models based on knowing the next WASDE report in advance. This should help traders evaluate investments to predict information contained within the report and in determining how best to use such forecasts. The price-forecasting models use regressions against the ratios of ending stocks to use. Results show a steady increasing return to trading over the report month. The highest returns are produced by trading during the growing and harvest seasons.
A biologically active peptide derived from soybeans by enzymatic hydrolysis was evaluated for its potential benefits on chicken growth performance, apparent ileal nutrient digestibility and intestinal histology in young broilers. Seven broiler starter diets, based on maize and soybean meal, were formulated to contain 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 g/kg of a commercial soybean bioactive peptide (SBP) product (Fortide, Chengdu Mytech Biotech Co. Ltd., Chengdu, Sichuan, China). All diets were equivalent in respect of energy density, and digestible protein, amino acids, and other nutrients. A total of 336, one-day-old male broilers (Ross 308) were allocated to 42 cages (eight birds/cage), which were randomly assigned to the six dietary treatments. There was no significant effect of SBP on weight gain and feed intake of the birds. A significant (P < 0.01) effect of SBP was observed for FCR. Inclusion of 1.0, 2.0, 3.0 and 4.0 g SBP/kg of feed resulted in similar FCR values to the diet with no SBP, addition of SBP to the diets at 5.0 and 6.0 g/kg of feed resulted in lower (P < 0.05) FCR compared to the diet with no SBP. Inclusion of SBP had no effect (P > 0.05) on apparent ileal digestibility of nutrients and energy utilisation. Though not statistically significant, SBP inclusion, regardless of level, resulted in 5.7% and 6.3% increases in digestibility of dry matter and nitrogen, respectively. Birds receiving no SBP had the shortest villi and those fed SBP at 3.0 and 6.0 g/kg of feed tended (P = 0.075) to have the greatest villus height. The current findings suggested that including SBP in broiler diets may benefit production through improving feed efficiency, and, to some extent, nutrient digestion and intestinal histology parameters.