Suturing and tying knots assisted by surgical robot systems are complicated and time-consuming tasks in minimally invasive surgery (MIS). It is almost impossible to perform these operations in laryngeal MIS because motions of the end-effectors are greatly confined by a narrow and long laryngoscope tube. This paper presents the robot-assisted operations of suturing and knot-tying in a laryngeal surgery under a self-retaining laryngoscope, which has a greatly confined workspace. In order to use robot assistance to perform the suturing and knot-tying tasks in such a workspace, an appropriate suturing path is planned. The suturing path planning is completed based on a knot-tying algorithm called the bending-twisting knot-tying (BTKT). A robot system for laryngeal MIS called MicroHand III is designed. The kinematical model of the system is developed in the paper. The simulation and experimental results have shown that suturing and knot-tying assisted by MicroHand III system are successful.