We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper examines the dependence structure and risk spillovers between oil prices and exchange rates in both oil-exporting and oil-importing countries. Using a flexible dependence switching copula model, we analyze both positive and negative dependence and transitions between the dependence regimes. Additionally, we investigate the directional risk spillovers between oil and currency markets in both their downsides and upsides. Based on empirical data from 1999 to 2024 for major oil-exporting and oil-importing countries, we find that oil price-currency dependence is predominantly positive for oil-exporting countries, with infrequent transitions, but mainly negative for oil-importing countries, with frequent transitions between the two dependence regimes. These transitions often occur around crisis or war times. Furthermore, we observe that during downturns in the oil market, tail dependence between oil prices and currencies becomes more pronounced than during upturns. Our results indicate the presence of risk spillovers between oil and currency markets, with the downside spillover effects outweighing the upside ones. Moreover, we find that risk spillover is stronger from oil markets to currency markets than the reverse direction. These insights substantially enrich the existing literature and would offer valuable implications for effective risk management strategies and policymaking.
Quantifying tail dependence is an important issue in insurance and risk management. The prevalent tail dependence coefficient (TDC), however, is known to underestimate the degree of tail dependence and it does not capture non-exchangeable tail dependence since it evaluates the limiting tail probability only along the main diagonal. To overcome these issues, two novel tail dependence measures called the maximal tail concordance measure (MTCM) and the average tail concordance measure (ATCM) are proposed. Both measures are constructed based on tail copulas and possess clear probabilistic interpretations in that the MTCM evaluates the largest limiting probability among all comparable rectangles in the tail, and the ATCM is a normalized average of these limiting probabilities. In contrast to the TDC, the proposed measures can capture non-exchangeable tail dependence. Analytical forms of the proposed measures are also derived for various copulas. A real data analysis reveals striking tail dependence and tail non-exchangeability of the return series of stock indices, particularly in periods of financial distress.
For a bivariate random vector $(X, Y)$, suppose $X$ is some interesting loss variable and $Y$ is a benchmark variable. This paper proposes a new variability measure called the joint tail-Gini functional, which considers not only the tail event of benchmark variable $Y$, but also the tail information of $X$ itself. It can be viewed as a class of tail Gini-type variability measures, which also include the recently proposed tail-Gini functional. It is a challenging and interesting task to measure the tail variability of $X$ under some extreme scenarios of the variables by extending the Gini's methodology, and the two tail variability measures can serve such a purpose. We study the asymptotic behaviors of these tail Gini-type variability measures, including tail-Gini and joint tail-Gini functionals. The paper conducts this study under both tail dependent and tail independent cases, which are modeled by copulas with so-called tail order property. Some examples are also shown to illuminate our results. In particular, a generalization of the joint tail-Gini functional is considered to provide a more flexible version.
“In this chapter, we consider how individual, univariate distributions can be combined to create multivariate, joint distributions, using copula functions. This can be very valuable when a firm is looking at aggregating dependent risks from different business units. We present Sklar’s seminal theorem, which states that for continuous distributions, every joint distribution can be expressed with a unique copula, and every copula defines a valid joint distribution.
We present some important copulas, both explicit and implicit, and discuss their features. We show how measures of rank dependency can be more informative than traditional correlation. In keeping with our interest in tail behaviour of loss distributions, we consider how different copulas exhibit different dependency in the tails of the marginal distributions.
Finally, we discuss construction and estimation of copulas.”
Potentialdata breach losses represent a significant part of operational risk and can be a serious concern for risk managers and insurers. In this paper, we employ the vine copulas under a Bayesian framework to co-model incidences from different data breach types. A full Bayesian approach can allow one to select both the copulas and margins and estimate their parameters in a coherent fashion. In particular, it can incorporate process, parameter, and model uncertainties, and this is very important for applications in risk management under current regulations. We also conduct a series of sensitivity tests on the Bayesian modelling results. Using two public data sets of data breach losses, we find that the overall dependency structure and tail dependence vary significantly between different types of data breaches. The optimally selected vine structure and pairwise copulas suggest more conservative value-at-risk estimates when compared to the other suboptimal copula models.
In this paper, we explore the use of an extensive list of Archimedean copulas in general and life insurance modelling. We consider not only the usual choices like the Clayton, Gumbel–Hougaard, and Frank copulas but also several others which have not drawn much attention in previous applications. First, we apply different copula functions to two general insurance data sets, co-modelling losses and allocated loss adjustment expenses, and also losses to building and contents. Second, we adopt these copulas for modelling the mortality trends of two neighbouring countries and calculate the market price of a mortality bond. Our results clearly show that the diversity of Archimedean copula structures gives much flexibility for modelling different kinds of data sets and that the copula and tail dependence assumption can have a significant impact on pricing and valuation. Moreover, we conduct a large simulation exercise to investigate further the caveats in copula selection. Finally, we examine a number of other estimation methods which have not been tested in previous insurance applications.
The development of an economic capital model requires a decision to be made regarding how to aggregate capital requirements for the individual risk factors while taking into account the effects of diversification. Under the Individual Capital Adequacy Standards framework, UK life insurers have commonly adopted a correlation matrix approach due to its simplicity and ease in communication to the stakeholders involved, adjusting the result, where appropriate, to allow for non-linear interactions. The regulatory requirements of Solvency II have been one of the principal drivers leading to an increased use of more sophisticated aggregation techniques in economic capital models. This paper focusses on a simulation-based approach to the aggregation of capital requirements using copulas and proxy models. It describes the practical challenges in parameterising a copula including how allowance may be made for tail dependence. It also covers the challenges associated with fitting and validating a proxy model. In particular, the paper outlines how insurers could test, communicate and justify the choices made through the use of some examples.
We demonstrate both analytically and numerically that the existing methods for measuring tail dependence in copulas may sometimes underestimate the extent of extreme co-movements of dependent risks and, therefore, may not always comply with the new paradigm of prudent risk management. This phenomenon holds in the context of both symmetric and asymmetric copulas with and without singularities. As a remedy, we introduce a notion of paths of maximal (tail) dependence and utilize the notion to propose several new indices of tail dependence. The suggested new indices are conservative, conform with the basic concepts of modern quantitative risk management, and are capable of differentiating between distinct risky positions in situations when the existing indices fail to do so.
Copula function has been widely used in insurance and finance for modeling inter-dependency between risks. Inspired by the Bernstein copula put forward by Sancetta and Satchell (2004, Econometric Theory, 20, 535–562), we introduce a new class of multivariate copulas, the composite Bernstein copula, generated from a composition of two copulas. This new class of copula functions is able to capture tail dependence, and it has a reproduction property for the three important dependency structures: comonotonicity, countermonotonicity and independence. We introduce an estimation procedure based on the empirical composite Bernstein copula which incorporates both prior information and data into the estimation. Simulation studies and an empirical study on financial data illustrate the advantages of the empirical composite Bernstein copula estimation method, especially in capturing tail dependence.
We study the relations between the tail order of copulas and hidden regular variation (HRV) on subcones generated by order statistics. Multivariate regular variation (MRV) and HRV deal with extremal dependence of random vectors with Pareto-like univariate margins. Alternatively, if one uses a copula to model the dependence structure of a random vector then the upper exponent and tail order functions can be used to capture the extremal dependence structure. After defining upper exponent functions on a series of subcones, we establish the relation between the tail order of a copula and the tail indexes for MRV and HRV. We show that upper exponent functions of a copula and intensity measures of MRV/HRV can be represented by each other, and the upper exponent function on subcones can be expressed by a Pickands-type integral representation. Finally, a mixture model is given with the mixing random vector leading to the finite-directional measure in a product-measure representation of HRV intensity measures.
We discuss risk diversification in multivariate regularly varying models and provide explicit formulas for Value-at-Risk asymptotics in this case. These results allow us to study the influence of the portfolio weights, the overall loss severity, and the tail dependence structure on large portfolio losses. We outline sufficient conditions for the sub- and superadditivity of the asymptotic portfolio risk in multivariate regularly varying models and discuss the case when these conditions are not satisfied. We provide several examples to illustrate the resulting variety of diversification effects and the crucial impact of the tail dependence structure in infinite mean models. These examples show that infinite means in multivariate regularly varying models do not necessarily imply negative diversification effects. This implication is true if there is no loss-gain compensation in the tails, but not in general. Depending on the loss-gain compensation, asymptotic portfolio risk can be subadditive, superadditive, or neither.
We show how the extremal behavior of d-variate Archimedean copulas can be deduced from their stochastic representation as the survival dependence structure of an ℓ1-symmetric distribution (see McNeil and Nešlehová (2009)). We show that the extremal behavior of the radial part of the representation is determined by its Williamson d-transform. This leads in turn to simple proofs and extensions of recent results characterizing the domain of attraction of Archimedean copulas, their upper and lower tail-dependence indices, as well as their associated threshold copulas. We outline some of the practical implications of their results for the construction of Archimedean models with specific tail behavior and give counterexamples of Archimedean copulas whose coefficient of lower tail dependence does not exist.
The tail dependence of multivariate distributions is frequently studied via the tool of copulas. In this paper we develop a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas are not explicitly accessible. Tractable formulae for tail dependence parameters are derived, and a sufficient condition under which the parameters are monotone with respect to the heavy tail index is obtained. The multivariate elliptical distributions are discussed to illustrate the results.
Dependence structures for bivariate extremal events are analyzed using particular types of copula. Weak convergence results for copulas along the lines of the Pickands-Balkema-de Haan theorem provide limiting dependence structures for bivariate tail events. A characterization of these limiting copulas is also provided by means of invariance properties. The results obtained are applied to the credit risk area, where, for intensity-based default models, stress scenario dependence structures for widely traded products such as credit default swap baskets or first-to-default contract types are proposed.
In this paper, we clarify dependence properties of elliptical distributions by deriving general but explicit formulae for the coefficients of upper and lower tail dependence and spectral measures with respect to different norms. We show that an elliptically distributed random vector is regularly varying if and only if the bivariate marginal distributions have tail dependence. Furthermore, the tail dependence coefficients are fully determined by the tail index of the random vector (or equivalently of its components) and the linear correlation coefficient. Whereas Kendall's tau is invariant in the class of elliptical distributions with continuous marginals and a fixed dispersion matrix, we show that this is not true for Spearman's rho. We also show that sums of elliptically distributed random vectors with the same dispersion matrix (up to a positive constant factor) remain elliptical if they are dependent only through their radial parts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.