We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by $T(x,y) = (E (x), C(x,y))$, where E is an expanding map of $\mathbb {T}^u$ and C is a contracting map on each fiber. If $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<r-(({u+d})/{2}+1)}$, $r \geq 2$, and T satisfies a transversality condition between overlaps of iterates of T (a condition which we prove to be $C^r$-generic under mild assumptions), then the SRB measure $\mu _T$ of T is absolutely continuous and its density $h_T$ belongs to the Sobolev space $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$. When $s> {u}/{2}$, it is also valid that the density $h_T$ is differentiable with respect to T. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.
This is the second part of our study on the dimension theory of
$C^1$
iterated function systems (IFSs) and repellers on
$\mathbb {R}^d$
. In the first part [D.-J. Feng and K. Simon. Dimension estimates for
$C^1$
iterated function systems and repellers. Part I. Preprint, 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every
$C^1$
IFS on
${\Bbb R}^d$
is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of
$C^1$
IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of
$C^1$
IFSs on
${\Bbb R}^d$
.
This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.
We characterize the necessary and sufficient conditions for optimality in discrete-time, infinite-horizon optimization problems with a state space of finite or infinite dimension. It is well known that the challenging task in this problem is to prove the necessity of the transversality condition. To do this, we follow a duality approach in an abstract linear space. Our proof resembles that of Kamihigashi (2003), but does not explicitly use results from real analysis. As an application, we formalize Sims's argument that the no-Ponzi constraint on the government budget follows from the necessity of the tranversality condition for optimal consumption.
An approximation procedure for time optimal control problems for the linear wave equation is analyzed. Its asymptotic behavior is investigated and an optimality system including the maximum principle and the transversality conditions for the regularized and unregularized problems are derived.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.