We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $(M, F, m)$ be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in $L^p(M)(p>1)$ to the heat equation on $\mathbb R^+\times M$ is uniquely determined by the initial data. Moreover, we give an $L^p(0<p\leq 1)$ Liouville-type theorem for nonnegative subsolutions u to the heat equation on $\mathbb R\times M$ by establishing the local $L^p$ mean value inequality for u on M with Ric$_N\geq -K(K\geq 0)$.
The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.
We study Riemannian manifolds with boundary under a lower weighted Ricci curvature bound. We consider a curvature condition in which the weighted Ricci curvature is bounded from below by the density function. Under the curvature condition and a suitable condition for the weighted mean curvature for the boundary, we obtain various comparison geometric results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.