Since any function f(x1, … , xm) from {0, 1}m in a finite field k can be uniquely written as a multilinear polynomial, we associate to it its inverse dual f*(x1, … , xm) expressing the coefficients of this canonical polynomial. We show that the unlikely hypothesis that the class P(k) of sequences of functions of polynomial complexity be closed by duality is equivalent to the well-known hypothesis P = #pP, where p is the characteristic of k.
In a first section we expose the result in the frame of classical Boolean calculus, that is, when k = ℤ/2ℤ. In a second section we treat the general case, introducing a notion of transformation whose duality is a special case; the transformations form a group isomorphic to GL2(k); among them, we distinguish the benign transformations, which have a weak effect on the complexity of functions; we show that, in this respect, all the non-benign transformations have the same power of harmfulness.
In the third section we consider functions from km into k, and in the last, after introducing #P = P to the landscape, we compare our results with those of Guillaume Malod, concerning the closure by ‘coefficient-function’ of various classes of complexity of sequences of polynomial defined in Valiant's way.